
ANALYSIS	OF	
ALGORITHMS



TOPICS
• Running Time
• Experimental Studies & challenges
• Why Algorithm Analysis?
• Estimating Runtime
• Growth functions and Asymptotic Analysis
• Comparing Algorithms
• Big Oh notation
• Analysis of Recursive Algorithms

© 2024 - Dr. Basit Qureshi



RUNNING	TIME
• How to time a program?
• Babbage Analytical Engine

© 2024 - Dr. Basit Qureshi

“ As soon as an Analytic Engine exists, it will necessarily guide 
the future course of the science. Whenever any result is sought 
by its aid, the question will arise—By what course of 
calculation can these results be arrived at by the machine in the 
shortest time? ” — Charles Babbage (1864)



RUNNING	TIME
• How to time a program?
• Use stopwatch!

© 2024 - Dr. Basit Qureshi



RUNNING	TIME
• How to time a program?
• Use Code?

© 2024 - Dr. Basit Qureshi

public class Stopwatch
{

private final long start = System.currentTimeMillis();

public double elapsedTime()
{ 

long now = System.currentTimeMillis();
return (now - start) / 1000.0;

}
}



RUNNING	TIME
• Comparing time

© 2024 - Dr. Basit Qureshi

Which will r
un faste

r??



RUNNING	TIME
• Comparing time

© 2024 - Dr. Basit Qureshi



EXPERIMENTAL	STUDIES	&	CHALLENGES
• Experimental study: How to?
• Write Code to implement the algorithm
• Run the program with a set of inputs
• Record time for each run
• Plot the results

© 2024 - Dr. Basit Qureshi

What happens when input size grows??



EXPERIMENTAL	STUDIES	&	CHALLENGES
• Experimental study Challenges
1. HARDWARE: Experimental running times of two algorithms are difficult 

to directly compare unless the experiments are performed in the same 
hardware and software environments.

2. INPUT: Experiments can be done only on a limited set of test inputs; 
hence, they leave out the running times of inputs not included in the 
experiment (and these inputs may be important).

3. CODE: An algorithm must be fully implemented in order to execute it to 
study its running time experimentally. 

© 2024 - Dr. Basit Qureshi



WHY	ANALYSIS	OF	
ALGORITHMS?



WHY	ALGORITHM	ANALYSIS
1. Allows us to evaluate the relative efficiency of any two algorithms in a 

way that is independent of the hardware and software environment.
2. Is performed by studying a high-level description of the algorithm 

without need for implementation. 
3. Takes into account all possible inputs. 

© 2024 - Dr. Basit Qureshi



WHY	ALGORITHM	ANALYSIS
• Understanding Run-times
• The running time of an 

algorithm typically grows 
with the input size.
• Average case time is often 

difficult to determine.
• We focus on the worst case 

running time. Easier to 
analyze

© 2024 - Dr. Basit Qureshi



WHY	ALGORITHM	ANALYSIS
• Estimating Run-time
• Estimate the primitive operations : "Basic computations performed by an 

algorithm”
• Identifiable in pseudocode
• Largely independent from the programming language
• Assumed to take a constant amount of time in the RAM model

• Examples:
• Evaluating an expression
• Assigning a value to a variable
• Indexing into an array
• Calling a method
• Returning from a method

© 2024 - Dr. Basit Qureshi



WHY	ALGORITHM	ANALYSIS

© 2024 - Dr. Basit Qureshi

operation example nanoseconds †

integer add a + b 2.1

integer multiply a * b 2.4

integer divide a / b 5.4

floating-point add a + b 4.6

floating-point 
multiply

a * b 4.2

floating-point 
divide

a / b 13.5

sine Math.sin(th
eta) 91.3

arctangent Math.atan2
(y, x) 129

... ... ...

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

operation example
nanosecond

s †

variable 
declaration

int a c1

assignment 
statement

a = b c2

integer compare a < b c3

array element 
access

a[i] c4

array length a.length c5
1D array 
allocation

new int[N] c6 N

2D array 
allocation

new int[N][N] c7 N 2

Observation. Most primitive operations take constant time



WHY	ALGORITHM	ANALYSIS
• Counting Primitive Operations
• By inspecting the pseudocode, we can determine the maximum number of 

primitive operations executed by an algorithm, as a function of the input 
size

© 2024 - Dr. Basit Qureshi



WHY	ALGORITHM	ANALYSIS
Estimating Running Time
Algorithm arrayMax executes 5n + 5 primitive operations in the worst case, 
4n + 5 in the best case.  Define:

Let a = Time taken by the fastest primitive operation
Let b = Time taken by the slowest primitive operation
Let T(n) be worst-case time of arrayMax. 

Then
a (4n + 5) ≤ T(n) ≤ b (5n + 5)

Hence, the running time T(n) is bounded by two linear functions

© 2024 - Dr. Basit Qureshi



GROWTH	RATE	OF	RUNNING	TIME
Growth rate.
Changing the hardware/ software environment affects T(n) by a constant factor, 
but
“Does not alter the growth rate of T(n)”

We consider Seven important functions
• Constant ≈ 1
• Logarithmic ≈ log n
• Linear ≈ n
• N-Log-N ≈ n log n
• Quadratic ≈ n2

• Cubic ≈ n3

• Exponential ≈ 2n

© 2024 - Dr. Basit Qureshi



GROWTH	RATE	OF	RUNNING	TIME
Common order-of-growth classifications
order of 
growth name typical code framework description example T(2N) / T(N)

1 constant a = b + c; statement
add two 
numbers 1

log N logarithmic while (N > 1)
{ N = N / 2; ... }

divide in 
half

binary 
search     ~ 1

N linear for (int i = 0; i < N; i++)
{ ... } loop

find the 
maximum 2

N log N linearithmic [see mergesort lecture]
divide

and 
conquer

mergesort     ~ 2

N 2 quadratic
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

{ ... }
double loop

check all 
pairs 4

N 3 cubic
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)

{ ... }

triple loop
check all 
triples

8

2N exponential [see combinatorial search lecture]
exhaustive

search
check all 
subsets

T(N)
© 2024 - Dr. Basit Qureshi



GROWTH	RATE	OF	RUNNING	TIME
Growth rate time-perception

growth
rate

time to process millions of inputs

1970s 1980s 1990s 2000s

1 instant instant instant instant

log N instant instant instant instant

N minutes seconds second instant

N log N hour minutes
tens of
seconds

seconds

N2 decades years months weeks

N3 never never never millennia

© 2024 - Dr. Basit Qureshi



COMPARISON	OF	ALGORITHMS
Comparing two algorithms
We give the runtime for two popular sorting 
algorithms as:
• insertion sort is n2 / 4
• merge sort is 2 n lg n

For a large dataset (1 million items), how 
long would it take to sort the data
• insertion sort takes roughly 70 hours
• merge sort takes roughly 40 seconds
For a faster machine it could be 40 minutes 
versus less than 0.5 seconds

© 2024 - Dr. Basit Qureshi



COMPARISON	OF	ALGORITHMS
Affect of constant factors
The growth rate is not affected by 
constant factors or 
lower-order terms
Examples
102 n + 105 is a linear function
105 n2 + 108 n is a quadratic 
function

© 2024 - Dr. Basit Qureshi



THE	BIG	OH	NOTATION



BIG-OH	NOTATION
The Big Oh notation
Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive 
constants c and n0 such that

f(n) ≤ cg(n)  for n ≥ n0
Example: Prove that 2n + 10 is O(n)
2n + 10 ≤ cn
(c − 2) n ≥ 10
n ≥ 10/(c − 2)
Pick c = 3 and n0 = 10 to satisfy the equation

© 2024 - Dr. Basit Qureshi



BIG-OH	NOTATION
The Big Oh notation example
Example: Prove that n2 is not O(n)
n2 ≤ cn
n ≤ c
The above inequality cannot be 
satisfied since c must be a constant 

© 2024 - Dr. Basit Qureshi



BIG-OH	NOTATION
The Big Oh notation example
Example: Prove that 7n - 2 is O(n)
7 n - 2 ≤ c n
need c > 0 and n0 ≥ 1 such that for n ≥ 
n0

this is true for c = 7 and n0 = 1

© 2024 - Dr. Basit Qureshi



BIG-OH	NOTATION
The Big Oh notation example
Example: Prove that 3 n3 + 20 n2 + 5 is 
O(n3)

3 n3 + 20 n2 + 5 ≤ c n3 for n ≥ n0

need c > 0 and n0 ≥ 1 such that
this is true for c = 4 and n0 = 21

© 2024 - Dr. Basit Qureshi



BIG-OH	NOTATION
The Big Oh notation example
Example: Prove that 3 log n + 5 is O(log n)

3 log n + 5 ≤ c log n 
need c > 0 and n0 ≥ 1 such that for n ≥ n0

this is true for c = 8 and n0 = 2

© 2024 - Dr. Basit Qureshi



BIG-OH	NOTATION
Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the growth rate of a function
The statement “f(n) is O(g(n))” means that the growth rate of f(n) is no 
more than the growth rate of g(n)
We can use the big-Oh notation to rank functions according to their growth 
rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

© 2024 - Dr. Basit Qureshi



BIG-OH	NOTATION
Big-Oh rules

If is f(n) a polynomial of degree d, then f(n) is O(nd), i.e.,
• Drop lower-order terms
• Drop constant factors

Use the smallest possible class of functions
Say “2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class
Say “3n + 5 is O(n)” instead of “3n + 5 is O(3 n)”

© 2024 - Dr. Basit Qureshi



ASYMPTOTIC	ALGORITHM	ANALYSIS
• Asymptotic Analysis
• The asymptotic analysis of an algorithm determines the running time in 

big-Oh notation
• To perform the asymptotic analysis
• We find the worst-case number of primitive operations executed as a function of 

the input size
• We express this function with big-Oh notation

• Example:
• We say that algorithm arrayMax “runs in O(n) time”

• Since constant factors and lower-order terms are eventually dropped any 
how, we can disregard them when counting primitive operations

© 2024 - Dr. Basit Qureshi



ASYMPTOTIC	ALGORITHM	ANALYSIS
• Asymptotic Analysis - Example
• Computing Prefix Averages: The i-th prefix average of an array X is average 

of the first (i + 1) elements of X:
• A[i] = (X[0] + X[1] + … + X[i])/(i+1)

© 2024 - Dr. Basit Qureshi



ASYMPTOTIC	ALGORITHM	ANALYSIS
• Asymptotic Analysis - Example
• The running time of prefixAverage1 is

O(1 + 2 + …+ n)
• The sum of the first n integers is n(n + 1) / 2
• There is a simple visual proof of this fact
• Thus, algorithm prefixAverage1 runs in O(n2) 

time 

© 2024 - Dr. Basit Qureshi

5

4

3

2

1

0

0 1 2 3 4 5



ASYMPTOTIC	ALGORITHM	ANALYSIS
• Asymptotic Analysis – Example 2
• Here is prefixAverage2 running in O(n) time 

© 2024 - Dr. Basit Qureshi



RELATIVES	OF	BIG	OH
• Relatives of Big Oh
• big-Omega
• f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1 

such that 
f(n) ≥ c g(n) for n ≥ n0

• big-Theta
• f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0 and an integer 

constant n0 ≥ 1 such that
c’g(n) ≤ f(n) ≤ c’’g(n) for n ≥ n0

© 2024 - Dr. Basit Qureshi



RELATIVES	OF	BIG	OH
• Relatives of Big Oh
• big-Oh

f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
• big-Omega

f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)
• big-Theta

f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

© 2024 - Dr. Basit Qureshi



© 2024 - Dr. Basit Qureshi



ANALYSIS	OF	
RECURSIVE	
ALGORITHMS



© 2024 - Dr. Basit Qureshi



© 2024 - Dr. Basit Qureshi



© 2024 - Dr. Basit Qureshi



RECURSION
• Recursion: when a method calls itself
• Classic example – the factorial function: 

n! = 1· 2· 3· ··· · (n-1)· n

© 2024 - Dr. Basit Qureshi

î
í
ì

-×
=

=
elsenfn
n

nf
)1(

0 if1
)(

Base Case

Recursive Call



RECURSION
• Building a recursion tree:

• A box for each recursive call
• An arrow from each caller to callee
• An arrow from each callee to caller showing return value

© 2024 - Dr. Basit Qureshi

factorial (4)

return 1

call

call

call

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answercall

factorial (3)

factorial (2)

factorial (1)

factorial (0)So what is the runtime for factorial ()?

1: public static int factorial(int n) {
2:  if(n == 0)
3:    return 1;
4:  else
5:    return n * factorial(n - 1);
6: } 



RECURSION
• Runtime as Big Oh

• A box for each recursive call
• An arrow from each caller to callee
• An arrow from each callee to caller showing return value

© 2024 - Dr. Basit Qureshi

factorial (4)

return 1

call

call

call

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answercall

factorial (3)

factorial (2)

factorial (1)

factorial (0)

Looking at the recursion tree, we can determine 
• factorial call is made for values 4, 3, 2, 1 and 0; 
• 0 being the base case, there are 4 recursive calls when n = 4. 
• for larger n, there would be n calls.
• So the runtime for factorial can be given as O(n).

1: public static int factorial(int n) {
2:  if(n == 0)
3:    return 1;
4:  else
5:    return n * factorial(n - 1);
6: } 



RECURSION
• Estimating the number of operations:

• Base call occurs only once
• Recursive calls are made repeatedly

• Recursion tree can help determine the order 
of growth.

© 2024 - Dr. Basit Qureshi

factorial (4)

return 1

call

call

call

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answercall

factorial (3)

factorial (2)

factorial (1)

factorial (0)

1: public static int factorial(int n) {
2:  if(n == 0)
3:    return 1;
4:  else
5:    return n * factorial(n - 1);
6: } 

1 op
1 op
1 op

4 ops

• Total recursive operations =  6 ; base-case operations is 1.
• Looking at the recursion tree, we estimate the runtime to be linear
• So T(n) = 6n + c
• where c is a constant time (includes base case + cost of recursion)



RECURSION
• Examples: Computing Powers

© 2024 - Dr. Basit Qureshi

Power (2, 4)

return 1

call

call

call

call

return 2*1 = 2 

return 2*2 = 4 

return 2*4=8 

return 2*8=16 final answercall

Power (2, 3)

Power (2, 2)

Power (2, 1)

Power (2, 0)So what is the runtime for Power (2,4)?
O(n)

1: public static int Power(int x, int n) {
2:  if(n == 0)
3:    return 1;
4:  else
5:    return x * Power(x, n - 1);
6: } 

!
"
#

−⋅

=
=

else)1,(
0 if1

),(
nxpx

n
nxp



RECURSION
• Examples: Reversing an array

© 2024 - Dr. Basit Qureshi

reverse (A, 0, 7)

call

call

call

call

call

reverse (A, 1, 6)

reverse (A, 2, 5)

reverse (A, 3, 4)

reverse (A, 4, 3)
So what is the runtime for reverse (A,0,7)?
O(n/2)

1: public static void reverse(int [] A, int i, int j){
2:  if(i >= j)
3:    return; 
4:  else {
5:    int temp = A[i];
6:    A[i] = A[j];
7:    A[j] = temp;
8:    return reverse(A, i+1, j-1);
9: } 

0 1 2 3 4 5 6 7

1 6 8 2 4 3 9 7

0 1 2 3 4 5 6 7

7 6 8 2 4 3 9 1

0 1 2 3 4 5 6 7

7 9 8 2 4 3 6 1

0 1 2 3 4 5 6 7

7 9 3 2 4 8 6 1

0 1 2 3 4 5 6 7

7 9 3 4 2 8 6 1

If n = 7; then n/2 calls were made to reach the middle of the array.



RECURSION
• Examples: Binary Search: Search for an integer in an ordered list

• We consider three cases:
• If the target equals data[mid], then we have found the target.
• If target < data[mid], then we recur on the first half of the sequence.
• If target > data[mid], then we recur on the second half of the sequence.

© 2024 - Dr. Basit Qureshi



RECURSION
• Examples: Binary Search

© 2024 - Dr. Basit Qureshi

1: public static boolean Bsearch(int [] A, int X, int lo, int hi){
2:  if(lo >= hi)
3:    return false; 
4:  else {
5:    int mid = (lo+hi)/2;
6:    if (X == A[mid])
7:      return true;
8:    else if (X < A[mid])
9:      return Bsearch(A, X, lo, mid-1);
10:   else
11:     return Bsearch(A, X, mid+1, hi);
12: } 
13:}

Each recursive call divides the search region in half; hence, there can be at 
most log n levels
So runtime is O(log n)



RECURSION
• Examples: Fibonacci numbers
• Fibonacci numbers are defined recursively:

F0 =  0
F1 =  1
Fi =  Fi-1 + Fi-2 for i > 1.

© 2024 - Dr. Basit Qureshi

1: public static int Fibonacci(int k){
2:  if(k==0)
3:    return 0; 
4:  else if(k==1)
5:    return 1;
6:  else
7:    return Fibonacci(k-1) + Fibonacci(k-2);
8: }



RECURSION
• Examples: Fibonacci numbers
• Let nk be the number of recursive calls by BinaryFib(k)

• n0 = 1
• n1 = 1
• n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3
• n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5
• n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9
• n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15
• n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25
• n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41
• n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

• Note that nk at least doubles every other time
• That is, nk > 2k/2. It is exponential. O(2n)

© 2024 - Dr. Basit Qureshi



NOTE
Materials for this set of slides were extracted from 
• Goodrich, Tamassia, Goldwasser ,”Analysis of Algorithms”, 6th edition, 

Wiley, 2014
• Robert Sedgewick and Kevin Wayne, ”Algorithms”, 4th edition, Addison 

Wesley, 2011.

© 2024 - Dr. Basit Qureshi


