TREES

CS210 — Data Structures and Algorithms
Dr. Basit Qureshi

2y, . ;
@// https://www.drbasit.org/

7 7
7
Yy /

N

https://www.drbasit.org/

g

CS210: THE JOURNEY SO FAR
- Rutme

Data Structure / Algorithm Bestcase Average Case Worst Case
Singly Linked Lists O(n) O(n) O(n)
Doubly Linked Lists O(n) O(n) O(n)
Circular Linked Lists O(n) O(n) O(n)
Stacks* O(1) O(1) O(1)
Queues* O(1) O(1) O(1)
I e I

Bubble Sort O(n?) O(n?) O(n?)
Selection Sort 0O(n?/2) 0O(n?/2) O(n?)
Insertion Sort O(n) 0O(n?/2) O(n?)
Merge Sort O(n log n) O(n log n) O(n log n)
Tim Sort O(n) O(n log n) O(n log n)
Quick Sort O(n log n) O(1.39 nlogn) 0(n?/2)

* Limited operations

"\ ©2020- Dr. Basit Qureshi

TREES

* Trees: Concepts

* Tree API

e Caveats in Making Trees
* Binary Trees

NN

\\\\\\&M\\\\\\\\\\

7 7 \\N
\\\\\\\\\\\\\\\\\\\\\\

© 2020 - Dr. Basit Qureshi

714

TREES

* A tree is an abstract model of a
hierarchical structure

* A tree consists of nodes with a parent-
child relation

« Examples:

 Organization Chart
* File Structures

* Programming Environments
» Expression Trees

o AIIIITT
il /////////
%,/)//,%/////

/////%/

/ /%////////M

© 2020 - Dr. Basit Qureshi

74
7414

//////////////

7 4

4/ ///

7

/ /,f/%/////////

TREE TERMINOLOGY

e Root
e Internal node: node with at least one child
e Leaf: node without children

* Ancestors: parent, grandparent, grand-grandparent, etc.

« Depth of a node: number of ancestors of a node

« Height of a tree: maximum depth of any node

« Descendant: child, grandchild, grand-grandchild, etc.
« Subtree: tree consisting of a node and its descendants

© 2020 - Dr. Basit Qureshi

Trivia:

What is the Height of this tree?
What is the Depth at F?

What are the ancestors of G?
What are the decendants of B?

%

" TREE API

Node Root;

: . int wval;
int size;

Node parent;
List Children;

i volid insert (int x);
\ :

Node remove (1nt x); .
§ Node search (int x); Noge () .
§§ boolean isEmpty () ; Node (,) ;

w2

///////////////

String toString() ;

Node getRoot() ;

Node getParent (Node) ;
List getChildren (Node) ;
Node getNumChildren() ;
boolean isLeaf (Node) ;
boolean isInternal() ;

Additional methods can be defined as necessary

R
NN
NN

\ © 2020 - Dr. Basit Qureshi

a—1—0

IMPLEMENTING A TREE

LL
> \vE
' .\
L
ol
Q
o
Q
ﬂvl.l.
Q
+
()]
0
| -
(@)
- | -
(qv]
(D)
=
— |
I.e
d.m
22
33
@) m.e
€S
o

<

>

\; \.\ \\\\\i\ \
\\\\‘\\\\\\\\\\\\\\\\\\\\\
277/ 7 i

© 2020 - Dr. Basit Qureshi

© 2020 - Dr. Basit Qureshi

Binary Trees

Avg case:
O(log n)

Worst case:
O(n)

AVL Trees

Worst case:
O(log n)

w7 /////%/;/////

////////////////

2

i,

% ///1////'//

BINARY TREES

* A binary tree is a tree with the
following properties:

o Each internal node has at most two

children (exactly two for proper binary
trees)

o The children of a node are an ordered pair

 We call the children of an internal
node left child and right child

* Alternative recursive definition: a
binary tree is either
o a tree consisting of a single node, or

o a tree whose root has an ordered pair of
children, each of which is a binary tree

© 2020 - Dr. Basit Qureshi

\

" BINARY TREES

« Notation @ Properties:
_ 2
n number of nodes " n=2 11
e number of external "esiT
nodes = n=2e—1
\ i number of internal " h<i
§ nodes = h<(n-1)2
;\\\ h height m e<2h
\ m h>log,e

m h>log,(n+1)-1

© 2020 - Dr. Basit Qureshi

N NN

7 7 ' ///////////
% %////

BINARY TREES

* Binary tree associated with an arithmetic expression
* internal nodes: operators

 external nodes: operands

« Examples: arithmetic expression tree for the expression
(2x(@-1)+ (3 xb))

© 2020 - Dr. Basit Qureshi

%

A\

BINARY TREES

» Binary tree associated with a decision process
« internal nodes: questions with yes/no answer
« external nodes: decisions

« Example: dining decision

Want a fast meal?

///////////////

Yes No

w2

How about coffee? On expense account?

-
\Z

No

Y No Yes

Starbucks Chipotle Gracie’s Café Paragon

NN
\ © 2020 - Dr. Basit Qureshi

7

\

/%%%%%%%

w2

R
NN
NN

BINARY TREE API

Node Root;
int size;

void insert (int x)
Node remove (int x)
Node search(int x)
boolean isEmpty () ;
String toString() ;
Node getRoot() ;

Node getParent (Node) ;
List getLChild (Node) ;
List getRChild (Node) ;
boolean isLeaf (Node) ;
boolean isInternal() ;

.
4
.
4
.

4

int val;
Node parent;
Node left;
Node right;

Node () ;
Node (,) ;

Additional methods can be defined as necessary

\ © 2020 - Dr. Basit Qureshi

eft

parent

right

7

N

- BINARY TREE WITH LINKED STRUCTURES

A

§
\
\ : :
\

§

\

3

g\ Is the runtime Linear or better?

§\ e Insert
2\ e Search
*\ Delete

© 2020 - Dr. Basit Qureshi

BINARY TREE WITH LINKED STRUCTURES

Deletion is a problem!

Deletion problem!
§ « Delete node that is a leaf

§ » Delete node that has one child
\§ - Delete node that has two children

© 2020 - Dr. Basit Qureshi

N\
N\

- BINARY TREE WITH ARRAYS

* Fixed size, but faster?!! [

Node v 1s stored at A[position(v)]

B position(root) =1
m Parent(v) = position(v) / 2
§ B LeftChild(v) = position(v) * 2
§\ m RightChild(v) = position(v) * 2 + 1
§ Does it improve the runtime?
\\ « Insert
\ « Search

§§ Delete

What about the deletion problem!
\\ . Delete node that is a leaf

« Delete node that has one child
« Delete node that has two children

© 2020 - Dr. Basit Qureshi

Binary Trees

Avg case:
O(log n)

Worst case:
O(n)

AVL Trees

Worst case:
O(log n)

NN
N

BINARY SEARCH TREES

* Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
« Empty.
« Two disjoint binary trees (left and right).

« Symmetric order. Each node has a key,
and every node’s key is:

 Larger than all keys in its left subtree.
« Smaller than all keys in its right subtree.

é%¢¢4/77/

7 ////////

/ //%//////////

© 2020 - Dr. Basit Qureshi

root

a left link
b >
a subtree

N

% N/ right child

of root

null links

parent of A and R key
left link \

QfE *

Q @ 9 S~ value
@ m associated

with R
/ \

keys smaller than E keys larger than E

© 2020 - Dr. Basit Qureshi

Binary Trees

Avg case:
O(log n)

Worst case:
O(n)

AVL Trees

Worst case:
O(log n)

Yy

AVL TREES

* Adelson-Velsky and Landis (AVL)
A Self Balancing Binary Search Tree
» Cost of Insert, Remove, Search is O(log n)

.\ ©2020-Dr. Basit Qureshi

* AVL TREES
* Algorithm:

1. Check Balanced Tree .i.e the height difference should not exceed ONE

5

© 2020 - Dr. Basit Qureshi

AVL TREES
* Algorithm:

Yy,

2. If not Balanced then ROTATE

RR

"\ ©2020- Dr. Basit Qureshi

\\\X?\{\
g

AVL TREES

* Algorithm:
2. If not Balanced then ROTATE

"\ ©2020- Dr. Basit Qureshi

LL

7%

N\

AVL TREES

* Algorithm:
2. If not Balanced then ROTATE

Z

Y\ © 2020 - Dr. Basit Qureshi

\

AVL TREES

* Algorithm:
2. If not Balanced then ROTATE

LR

~ il

|
M/////////////

7%

N\
AN
Ii\l
N \\\
RN
\ N\
X \

"\ ©2020- Dr. Basit Qureshi

N\

57

>

///////'//

AVL TREES

» Cost of Checking Height is O(log n).

* The Check height is conducted only when a node is inserted of removed.
 The max number of nodes in a branch is log n, where n is the max number
of nodes.

» Cost of a Rotation is constant
« 2-4 operations per rotation

* The overall cost is O(log n) for insertion and removal
* The cost is O(log n) for search.

© 2020 - Dr. Basit Qureshi

g

CS210: THE JOURNEY SO FAR
- Rutme

Data Structure / Algorithm Bestcase Average Case Worst Case
Singly Linked Lists O(n) O(n) O(n)
Doubly Linked Lists O(n) O(n) O(n)
Circular Linked Lists O(n) O(n) O(n)
Stacks* 0O(1) O(1) O(1)
§ Queues* O(1) O(1) O(1)
§\ Binary Search Trees O(1) 0O(1.39 log n) O(n)
\\\\ AVL Trees O(1) O(log n) O(log n)
-
\ Bubble Sort O(n?) O(n?) O(n?)
Selection Sort 0O(n?/2) 0O(n?/2) O(n?)
1 Insertion Sort O(n) 0O(n?/2) O(n?)
\§ Merge Sort O(n log n) O(n log n) O(n log n)
\ Tim Sort Oo(n) O(n log n) O(n log n)

\\ \ QﬂisszgaEEQureshi O(n |Og n) O(1.5 1 |Og n) O(n2/2)

