A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREES

» BSTs

» ordered operations

» deletion

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

» BSTs

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Binary search trees

Definition. A BST is a binary tree in symmetric order.
root

a left link /

a subtree >
A binary tree is either: AN
» Empty. % righ?child
« Two disjoint binary trees (left and right). \T/ g ite
null links

parent of A and R

Symmetric order. Each node has a key, . key
eft lin
and every node’s key is: of E ™~
« Larger than all keys in its left subtree. (A 9\valye
@ m associated
« Smaller than all keys in its right subtree. with R
/ \

keys smaller than E keys larger than E

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

insert G

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:
« A Key and a Value.
« A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node

{
private Key key;

private Value val;
private Node left, right;
public Node(Key key, Value val)

{
this.key = key;
this.val = val;

Key and Value are generic types; Key is Comparable

BST

Node———| key | val

e ~
lTeft right
BST with smaller keys BST with larger keys

Binary search tree

BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value>

{

private Node root;

private class Node
{ /* see previous slide */ }

public void put(Key key, Value val)
{ /* see next slides */ }

public Value get(Key key)
{ /* see next slides */ }

public void delete(Key key)
{ /* see next slides */ }

public Iterable<Key> iterator()
{ /* see next slides */ }

root of BST

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

public Value get(Key key)

{
Node X = root;
while (x != null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = X.right;
else return x.val;
}
return null;
}

Cost. Number of compares is equal to 1 + depth of node.

BST insert

Put. Associate value with key. el L

Search for key, then two cases:

« Keyin tree = reset value. search for L ends -~

. at this null link
o Key not in tree = add new node.

create new node — @
N
7/

reset links
on the way up

Insertion into a BST

BST insert: Java implementation

Put. Associate value with key.

concise, but tricky,

public void put(Key key, Value val) mCﬂSWe?ﬁﬁ;
{ root = put(root, key, val); 1} read carefully:

private Node put(Node x, Key key, Value val)

{
1T (x == null) return new Node(key, val);
int cmp = key.compareTo(x.key);
1f (cmp < 0)
x.left = put(x.left, key, val);
else if (cmp > 0)
X.right = put(x.right, key, val);
else
x.val = val;
return Xx;
}

Cost. Number of compares is equal to 1 + depth of node.

10

Tree shape

« Many BSTs correspond to same set of keys.
« Number of compares for search/insert is equal to 1 + depth of node.

worst case

best case m typical case

© (S)
() (B) (R) (X

Bottom line. Tree shape depends on order of insertion.

11

BST insertion: random order visualization

Ex. Insert keys in random order.

N =255

max = 16
avg = 9.1
opt=7.0

L= N—

12

BSTs: mathematical analysis

Proposition. If Ndistinct keys are inserted into a BST in random order,
the expected number of compares for a search/insert is ~2 In V.
Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If Ndistinct keys are inserted in random order,
expected height of tree is ~ 4.311 In V.
How Tall is a Tree?

Bruce Reed
CNRS, Paris, France

reed@moka.ccr.jussieu.fr

ABSTRACT

Let H, be the height of a random binary search tree on n
nodes. We show that there exists constants o = 4.31107... .
and 8 = 1.95... such that E(H,) = alogn — Bloglogn +
O(1), We also show that Var(H,) = O(1).

But... Worst-case height is N 1.
[exponentially small chance when keys are inserted in random order]

13

ST implementations: summary

guarantee average case
: : operations
implementation

on keys
search insert search hit insert

sequential search

i I

(unordered list) N %2 N N equals()
binary search : | 1 conpareTo0)
(ordered array) gN N gN 5 N p
BST N N 1.391g N 1391g N compareTo()

Why not shuffle to ensure a (probabilistic) guarantee of 4.311 In N?

14

3.2 BINARY SEARCH TREES

» deletion

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

ST implementations: summary

guarantee average case
ordered

implementation >
: search : ops:
search | insert delete hit insert delete

sequential search
(linked list)

N N N N N N

binary search
(ordered array)

BST N N N 1391gN 1391gN v

lg N N N lg N 1h N % N v

Next. Deletion in BSTs.

operations
on keys

equals()

compareTo()

compareTo()

16

BST deletion: lazy approach

To remove a node with a given key:
o Set its value to null.
e Leave key in tree to guide search (but don't consider it equal in search).

delete |

Cost. ~21In N’ per insert, search, and delete (if keys in random order),
where N'is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

17

Deleting the minimum

To delete the minimum key:

« Go left until finding a node with a null left link. o left unil

reaching null

« Replace that node by its right link. left link

« Update subtree counts.

\

return that
node’s right link

S

public void deleteMin() T
root = deleteMin(root); } available for

{

private Node deleteMin(Node x)

{

1T (x.left

garbage collection

update links and node counts
after recursive calls

>~ 7
\
== null) return x.right; \&%;:>>///<>
X.left = deleteMin(x.left);

X.count =
return Xx;

1 + size(x.left) + size(x.right);

18

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

deleting C

node to delete

®
|

replace with

null link

available for
garbage
/ collection

update counts after
recursive calls

19

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

deleting R
update counts after

recursiv%mﬂs/» 7
CSD/O

replace with

child link available for
/ garbage

collection

node to delete

20

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

 Find successor x of t. S HUESR e de
e Delete the minimum in t’s right subtree. «<—— butdon't garbage collect x
e Put xin t's spot. «—— stillaBST

node to delete

N

search for kev E t.left deleteMin(t.right)
for key \ %/

p 7

X 5
N \
< Ssuccessor

min(t.right)

go right, then / update links and
go left until node counts after
reaching null recursive calls

left link

21

Hibbard deletion: Java implementation

public void d
{ root = del

private Node
1f (X == n
int cmp =
1f (c
else 1t (c
else {
if (x.r
1f (x.1

Node t

X = min

X.right

X.left
}

X.count =
return X;

elete(Key key)
ete(root, key); }

delete(Node x, Key key) {

ull) return null;
key.compareTo(x.key) ;

mp < 0) x.left = delete(x.left,
mp > 0) x.right = delete(x.right,

ight == null) return x.left;
eft == null) return x.right;

= X;
(t.right);

= deleteMin(t.right);
= t.left;

size(x.left) + size(x.right) + 1;

key); <

key) ;

search for key

no right child
no left child

replace with
successor

update subtree
counts

22

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

N=150

max = 16
avg = 9.3
opt=6.4

Surprising consequence. Trees not random () = VN per op.
Longstanding open problem. Simple and efficient delete for BSTs.

23

ST implementations: summary

guarantee average case :
: : ordered operations
implementation
: search : ops? on keys
search | insert delete hit insert delete
N

sequential search
N N 5 N N b N equals()

(linked list)

binary search
(ordered array)

BST N N N 1391gN 1391gN @ v compareToQ)

other operations also become +/N

Ig N N N Ig N % N 1 N v compareTo()

if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.

24

