Presentation for use with the textbook Data Structures and
Algorithms in Java, 6t edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

N
N

AVL Trees

AN

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees

AVL Tree Definition

N

AVL trees are
balanced

® An AVL Treeisa 2
binary search tree G
such that for
every internal

node v of T, the

heights of the
children of v can
differ by at most 1

An example of an AVL tree where the
heights are shown next to the nodes

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 2

Fact: The height of an AVL tree storing n keys is O(log n).

Proof (by induction): Let us bound n(h): the minimum number
of internal nodes of an AVL tree of height h.

#® We easily see that n(1) =1 and n(2) = 2

#® For n > 2, an AVL tree of height h contains the root node,
one AVL subtree of height n-1 and another of height n-2.

That is, n(h) = 1 + n(h-1) + n(h-2)

#® Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction),
n(h) > 2in(h-2i)

Solving the base case we get: n(h) > 2 V21

Taking logarithms: h < 2log n(h) +2

Thus the height of an AVL tree is O(log n)

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 3

Insertion

"4 Insertion is as in a binary search tree
Always done by expanding an external node.
Example:

N

before insertion

after insertion

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees

Trinode Restructuring

#® Let (g,b,0) be the inorder listing of x, y, z

N

Single rotation

Perform the rotations needed to make b the topmost node of the three

Double rotation around

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees

Insertion Example, continued

5

N

...balanced

© 2014 Goodrich, Tamassia, Goldwasser

unbalanced... “-----

AVL Trees 6

Restructuring (as Single Rotations)
e Single Rotations:

T;
© 2014 Goodrich, Tamalssia, Goldwasser AVL Trees 7

Restructuring (as Double Rotations)

J@* double rotations:

N

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 8

Removal

Removal begins as in a binary search tree, which means the node
removed will become an empty external node. Its parent, w, may
cause an imbalance.

4 Example:

N

before deletion of 32 after deletion

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 9

Rebalancing after a Removal

Let z be the first unbalanced node encountered while travelling up the tree
from w. Also, let y be the child of z with the larger height, and let x be the

child of y with the larger height
We perform a trinode restructuring to restore balance at z

As this restructuring may upset the balance of another node higher in the
tree, we must continue checking for balance until the root of T is reached

N

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 10

/AVL Tree Performance

AVL tree storing n items
= The data structure uses O(n) space

= A single restructuring takes O(1) time
+ using a linked-structure binary tree
= Searching takes O(log n) time
+ height of tree is O(log n), no restructures needed
= Insertion takes O(log n) time
+ initial find is O(log n)
+ restructuring up the tree, maintaining heights is O(log n)
= Removal takes O(log n) time
+ initial find is O(log n)
+ restructuring up the tree, maintaining heights is O(log n)

N

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 11

N

(S I o

o 1 Oy L

9
10
11
12
13
14
15
16
17
18

Java Implementation

/%x An implementation of a sorted map using an AVL tree. %/
public class AVLTreeMap<K,V> extends TreeMap<K,V> {

/*% Constructs an empty map using the natural ordering of keys. */
public AVLTreeMap() { super(); }
/*% Constructs an empty map using the given comparator to order keys. %/
public AVLTreeMap(Comparator<K> comp) { super(comp); }
/*% Returns the height of the given tree position. */
protected int height(Position<Entry<K,V>> p) {
return tree.getAux(p);
}
/*x Recomputes the height of the given position based on its children's heights. */
protected void recomputeHeight(Position<Entry<K,V>> p) {
tree.setAux(p, 1 + Math.max(height(left(p)), height(right(p))));
}
/%% Returns whether a position has balance factor between —1 and 1 inclusive. %/
protected boolean isBalanced(Position<Entry<K,V>> p) {
return Math.abs(height(left(p)) — height(right(p))) <=1,

}

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 12

Java Implementation, 2

L

N

19 /#x Returns a child of p with height no smaller than that of the other child. %/
20 protected Position<Entry<K,V>> tallerChild(Position<Entry<K,V>> p) {

21 if (height(left(p)) > height(right(p))) return left(p); // clear winner
22 if (height(left(p)) < height(right(p))) return right(p); // clear winner
23 // equal height children; break tie while matching parent's orientation

24 if (isRoot(p)) return left(p); // choice is irrelevant

25 if (p == left(parent(p))) return left(p); // return aligned child

26 else return right(p);

27}

-

i

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 13

Java Implementation, 3

33
4

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 }

protected void rebalance(Position<Entry<K,V>> p) {
int oldHeight, newHeight;
do {
oldHeight = height(p); // not yet recalculated if internal
if (lisBalanced(p)) { // imbalance detected
// perform trinode restructuring, setting p to resulting root,
// and recompute new local heights after the restructuring
p = restructure(tallerChild(tallerChild(p)));
recomputeHeight(left(p));
recomputeHeight(right(p));
}
recomputeHeight(p);
newHeight = height(p);
p = parent(p);
} while (oldHeight = newHeight && p !'= null);
}
/#% Overrides the TreeMap rebalancing hook that is called after an insertion. */
protected void rebalancelnsert(Position<Entry<K,V>> p) {
rebalance(p);
}
/#% Overrides the TreeMap rebalancing hook that is called after a deletion. */
protected void rebalanceDelete(Position<Entry<K,V>> p) {
if (lisRoot(p))
rebalance(parent(p));
}

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees

14

