© 2024 - Dr. Basit Qureshi

Jlalw poll acola
PRINCE SULTAN

CS435 DistributelEaManl

. 4
»

4

DISTRIBUTED 2= .
SYSTEMS " »Dr. Basit Qureshi

-
: O" S "‘J ‘ g o
. - . :
—p S | : v . “ -2

-

ARCHITECTURE I PR SMEE MACH

7
7,
/(;”///4

//////////////// 4

V.

W/

74

7.

T s

7 L

//////%///////

W

LI

TOPICS

* Operating Systems, a quick review
* Distributed Systems Themes

* Dist. Sys. Challenges

* Dist. Sys. Architecture

* Distributed Services

© 2024 - Dr. Basit Qureshi

CS435 DistributelEaManl

. 4
B

4

3it Qureshi
SMIEEE MACM

OPERATING SYSTEMS)r-

vy Xy ~

‘ o' - "“," e
. - e .
—p S | : v . “ -2

-

T

OPERATING SYSTEMS, A QUICK REVIEW

* Computer Organization

Von Neumann
Basic Structure

Memory

T 11, =

Arithmetic

Output

— . .
Control Logic Unit | |
Unit < 5 4

—

Processor Accumulator

: ////’/////// 4
/ %74//4/// /////
M

S

\ © 2024 - Dr. Basit Qureshi

7

N NN
\

A\

OPERATING SYSTEMS, A QUICK REVIEW

* Uni-Computer Operating Systems

* Application, Memory, Processor, File-system resources, all on one machine

© 2024 - Dr. Basit Qureshi

OS interface

System call |

No direct data exchange between modules

User mode

User Memory Process File module \
application module module
A || A A
Microkernel /
Hardware

Kernel mode

OPERATING SYSTEMS, A QUICK REVIEW

* Multi-Computer Operating System
* All computers run using the same OS.
* Memory shared between processors.

* Dist. Applications run sharing Memory and CPU resources

Linux
Machine A Machine B Machine C [—T
(83

Distributed applications VVMware
— — ESXi™

Distributed operating system services

////%//4//// 7

7
Y cantl

i

Kernel Kernel

Kernel

X—Z2C OLww

1 1 1

Network

7,

//////% 7

7 /;//,///

Z

7 s

W

OPERATING SYSTEMS, A QUICK REVIEW

* Network Operating Systems ol | 1ol | b
* Network File system mounting on individual machines. CiISCO.
* Resources accessible via network. T0S

 Relatively primitive set of services provided (e.g. Printers)

* Hard to maintain a consistent view. Configuration
overhead/complexity

Machine A Machine B Machine C

Distributed applications

Netwo.rk Os Netwo.rk Os Netwo.rk Os ARISTA
services services services
Kernel Kernel Kernel

Network /

OPERATING SYSTEMS, A QUICK REVIEW

* Middleware-based Operating Systems

* Middleware provides a set of services and communication
protocols

e Abstracts the complexities of distributed computing, making it
easier for developers to design and implement distributed oo0 R O S

. . O
annlications. F.e. Socket APIs : : ®
\
§§ Machine A Machine B Machine C
\ | | | |
\
N\ Distributed applications
A\
\ I I | I
\\ Middleware services
\ Network OS Network OS Network OS
\\g\ services services services
\)
N
L\
AN Kernel Kernel Kernel
%‘
\ | | |

\ Network
© 202

OPERATING SYSTEMS, A QUICK REVIEW
* Comparing Operating Systems

///////////////// 4

7/
/%/////

7z

7/

, ///////////////

L

Distributed OS Network | Middleware-
Item 0s based OS
Multiproc. | Multicomp. ase
Degree of transparency Very High High Low High
Same OS on all nodes Yes Yes No No
Number of copies of OS 1 N N N
Ba5|s.for. Shared Messages Files Model specific
communication memory
Global,
Resource management | Global, central L Per node Per node
distributed
Scalability No Moderately Yes Varies
Openness Closed Closed Open Open

© 2024 - Dr. Basit Qureshi

CS435 DistributelEaManl

. 4
B

4

DISTRIBUTED " ».Dr. Blisit Qureshi
SYSTEMS THEMES NEERIFTIER S\ TEEE MACM

‘ -» . ”g:",,"" >
) - .)
—p S | : v . “ -2

-

///////////////// o

//////

#

77

Z &

////////////

DISTRIBUTED SYSTEM THEMES

* Distributed Systems are a collection of independent computers that
appears as a single system to the user(s)

* Independent = autonomous, self-contained
* Single system = user not aware of distribution

* Relevant terms / themes
1. Scaling

Collaboration

Latency

Acessibility

Availability

Transparency

o Uk Wl

© 2024 - Dr. Basit Qureshi

Lt

/////////////

A

P

) \
N
1\§
N \\
N\
\\N
N
\

1. SCALING

* Vertical Scaling (Powerful systems)

Moore’s law

“The number of transistors
on a microchip doubles
approximately every two
years, while the cost of
computers is halved”

"\ ©2024 - Dr. Basit Qureshi

12

74

\

1. SCALING

7/

 Vertical Scaling (Powerful systems)
* Increases in processor performance have not been keeping up with Moore’s Law since around 2005.

42 Years of Microprocessor Trend Data

2 1 T 1 1 ry
10° . 1 Teancictare
“ ransistiors
I ‘.‘... . {thousands)
10" L2 < .
§ - “.A 3
\ 5 1.. N Single-Thread
10° | o0
§ o o &b Performance
i | " “‘ Laly T | (SpecINT x 10%)
\ e L ‘
§\ oy | R ..o *“‘ 43 y Frequency (MH2)
\§ . ’*. v % 3 L Typical Power
10° } . =0: q - v ""'\' " e (Watts)
;?\ 1L ; - " vy v‘!)' e o. ." 3 Number of
10 e S .8 2 A Logical Cores
‘A = 3 v v vy v v °
100 - ‘ L J * * ‘ SH S A SRR NNE 4 —~
1970 1980 1990 2000 2010 2020
Year

"\ ©2024- Dr. Basit Qureshi

Ongral Gala WP 12 T your 2010 colleciod and pRoled By M. Horowiz F Lateste. O Shacram. K Onsctun, L Hammond and C Banen

New plot a0 Auia colecied lor 20002017 by K Rugp 13

\ 1. SCALING

 Vertical Scaling (Powerful systems)

* Adding more processor cores helped improve performance; but need to write multi-threaded
programs

* Intel Xeon 8490h 1.90GHz~3.50GHz 60Core/120Thread Processor (15000 USD)
* Apple M3 Ultra 32-core CPU/ 80 Core GPU

* Nvidia Geforce RTX 4090 18,432 CUDA cores

\
\ i RTX 4090
Y

N\ !

\§§ : X

L

© 2024 - Dr. Basit Qureshi

14

7%

\

Z

1. SCALING

* Horizontal Scaling

* Distributed load across more systems
* Pixar Movie Rendering: 2000 machines with 24000+ cores used to render frames.

* Google: A single Google query uses 1,000 computers in 0.2 seconds to retrieve an answer

"\ ©2024 - Dr. Basit Qureshi

15

\

%

2. COLLABORATION

* Collaborate
* Make content
* Social connectivity
* E-Commerce
* News & media

X Wi

\\
N\ © 2024 - Dr. Basit Qureshi

B YouTube

@ WhatsApp

NETFLIX

Microsoft Teams

@ Spotify

16

74
778

3. LATENCY

e Caching

* Keep the data close to where it is needed
* Replication

* Make multiple copies

* Caching vs. replication

* Caching: temporary copies of frequently accessed data closer to where it’s
needed

* Replication: multiple copies of data for increased fault tolerance

20
d N

\ apache ™ || : aWs ﬁ
S |Qn|[e CLOUDFLARE .

© 2024 - Dr. Basit Qureshi

17

74

g\\ 4. ACCESSIBILITY Oﬁg) 1IOT ANALYTICS Your Global loT Mariet Research Partner
Global loT market forecast (in billions of connected loT devices)
* Distributed Systems are accessible A S s I MO e R
. 0 - —) " Connectivi pe - -
through Systems, loT devices, Smart- ([memanen] G 155 A e > G5
phones etc. nz g g Wi ieiined G
' W Cellutar G loT C Gow (e
e |oT = Internet of Things GRSy G
» 2023: 16.7 Billion devices o s))
B Cellular 10T (excl. $G, LPWA) Q%) (8%)
 Smart-Phones :f,'%w, aw> Geo
- . o prrige Q> Qe
\ e 2023: 6.2 Billion devices 2024 2004 20260 20000 it
\ G e cAGR
§ : __2'::: 4 bt e s Aoy Y D Shmasoin Sgton, P Wocs 2 S, AN Pl Py and avbant prension
\

E - Lanore

i

§ . Weather L Sunshine - s a o
\ PV | erid " Light Rain-Light Rain ~ ~ 05:36~18:30 ==
\ Today Yield : % ’A‘ Today Imported : 6.47kWh) Temeersue QY ity m
\ 15.1kWh =~ 288.108PKR 0.07kW 2.103kW 23C-26C 85 e
\\Y Today Exported : -
\ 7.13kWh = 136.04PKR }m Wind Direction 225 Wind Speed
NE 503
N Update Time : 29/08/2024 02:00:05 (UTC+05:00)

Plant Information More >

»
| consumed
@ Today Consumed : 14.44kWh
2173kW
29/08/2024 m Month Year Total Parameter Export “«x“ -
Daily PV to Consumption Dally Yield State Plant Name I o T c L U D
= 7.97KWh(53%) il @ Online Dr. Igbal Qureshi
15.1kWh @ Daily PV to Grid Daily Imported
7.13kWh(47%) 6.47KWh Capacity Ouner

10.9kWp -

///////////////// A4

Y

i

))

///////

7

5. AVAILABILITY

e System Components Fail

* Replicas can take over

 Computers, processes, disks, memory, data centers etc
e Fault tolerance

* |ldentify & recover from component failures

requests :
> Active
l updates
* Recoverability Standby
e Software can restart and function — May involve restoring state

' updates
Load __, Active
balancer

\ 3 + updates

Active

Active
/ 4
requests R

7,

//7,/, % 7

i
s

7/

6. TRANSPARENCY

* High level: hide distribution from users

* Low level: hide distribution from software
* Location tra NSPAarency Users don’t care where resources are
* Migration transparency Resources move at will

° Replication transparency Users cannot tell whether there are copies of resources
* Concu rrency transparency Users share resources transparently

e Parallelism tra NSPAarency Operations take place in parallel without user’s knowledge
* Failure tra NSPArency Lower-level software works around any failures — things just work

© 2024 - Dr. Basit Qureshi

20

© 2024 - Dr. Basit Qureshi

CS435 DistributelEaManl

. 4
B

4

DISTRIBUTED SYSTEM 4,-,Dr. _:‘ 3it Qureshi
CHALLENGES BRI S\ TR EE MACM

‘ -» . ”g:",,"" >
) - .)
—p S | : v . “ -2

-

DISTRIBUTED SYSTEM CHALLENGES

1. Concurrency
2. Latency

3. Partial Failure

4. Security

© 2024 - Dr. Basit Qureshi

22

DISTRIBUTED SYSTEM CHALLENGES

1. Concurrency

* Modern processors have multiple cores
e Each core can execute parts of a program

* Lots of requests may occur at the same time
* Need to deal with concurrent requests

s PP
i ///////////////////

7’ ,m////

© 2024 - Dr. Basit Qureshi

23

%

\

DISTRIBUTED SYSTEM CHALLENGES

1. Concurrency
* Need to ensure consistency of all data

Serial Parallel Concurrent

Time Core1l Core2

Time Corel Core2 Time Corel Core?2

Start Start s
Tasks tart
Tasks Tasks

Task 2 Task 2.1
Task 2
End

End End
Tasks Tasks Tasks

Serial execution of two tasks The parallel execution of two tasks Two cores concurrently executing many tasks

DISTRIBUTED SYSTEM CHALLENGES

Concurrent
1. Concurrency
 Understand critical sections & mutual Time Corel Core2
exclusion - ?
* Beware: mutual exclusion (locking) can —

affect performance
e Caching and replication costs

 Complex; synchronization, message-

\ delivery, check-sums etc
i\\ Task 1.3
\

3 tnc

Two cores concurrently executing many tasks

© 2024 - Dr. Basit Qureshi 25

714

A\

DISTRIBUTED SYSTEM CHALLENGES

2. Latency

Communication {Time taken for a data packet to travel from the source to the destination across a network}
* Propagation Delay: The time it takes for a signal to travel through the medium

* Transmission Delay: The time required to push all the packet’s bits into the wire.

* Processing Delay: The time taken by routers and switches to process the packet headers,
check for errors, and route them appropriately.

* Queuing Delay — i vitches due to

\ congestion u
\
\\ Bandwidth
\ (Mbps) -
\\ p
§ | wiri Cable ISP oo | | o [[1P| Ethemnet | $
\
3 .
A\
§\§ | |
\ n
\ < .. ’
\ Latency (ms)

© 2024 - Dr. Basit Qureshi

X

"\ ©2024- Dr. Basit Qureshi

DISTRIBUTED SYSTEM CHALLENGES

2. Latency

* Synchronous Communication Protocols

* Both sender and receiver share a common clock signal, ensuring that data is transmitted
and received at precise intervals.

* Advantages: High throughput; Low overhead; Reduced latency
* Disadvantages: Complex; Distance Limits; Cost

« Examples: USB (Universal Serial Bus); Ethernet (at the Data Link Layer); I12C (Inter-
Integrated Circuit):

Synchronous Transmission

Data Flow Direction

[111001011010 | 101001011011 | 010071011077 |11/,

Continuous flow of data

Cite: https://www.educba.com/synchronous-and-asynchronous-transmission/

27

\ DISTRIBUTED SYSTEM CHALLENGES

2. Latency

* Asynchronous Communication Protocols

e Sender and receiver DO NOT share a common clock signal. Communication can occur at
any time.

* Advantages: Flexible; Simple; Scalable
* Disadvantages: Poor efficiency; High latency; Error handling

§
i\\\§ Asynchronous Transmission
N\
§\\ Data Flow Direction "
\ Stop Bits
N\ ‘I, 1
§\\\\\ lala mz 1 ﬁI 0 LECN
\ - EoT
| ﬂ
§ Start Bits énps Between
\ Data Units (®, eoucsa

Cite: https://www.educba.com/synchronous-and-asynchronous-transmission/
© 2024 - Dr. Basit Qureshi

28

7%

A

/,
o,

DISTRIBUTED SYSTEM CHALLENGES
2. Latency

Storage {Read/Write speeds of the storage media}

* Traditional Storage: HDD — Most common and slow due to mechanical parts. (5-10 ms)
e SSD / NVme: Non volatile Electronics Memories (<20 micro seconds)
 RAM: Extremely low latencies (nano seconds)

e Cloud: High latency due to network delays

* Caching: Keep data close to where it’s processed to maximize efficiency
* Memory vs. disk

* Local disk vs. remote server

« Remote memory vs. remote disk

¢

\ DISTRIBUTED SYSTEM CHALLENGES

3. Partial Failure

* In local systems, failure is usually total (all-
or-nothing)

* In distributed systems, we get partial failure

* A component can fail while others
continue to work

\ e Failure of a network link is
§ indistinguishable from a remote server
\ : ;
§ failure CrowdStrike Falcon BSOD Issue
§ ° Sent 3 requeSt but donlt get 3 response Workaround to Bring Affected Workstabions Back Online
\
\§\ = what happened?
\ \
b\

© 2024 - Dr. Basit Qureshi

30

A\

7

DISTRIBUTED SYSTEM CHALLENGES

3. Partial Failure
* No global state
* There is no global state that can be

examined to determine errors Ql
. Thgre is no agent that- can detgrmlne Web Application
which components failed and inform et "

§ everyone else ‘

\\ * Need to ensure the state of the entire / : \

! . . .

‘§§ system is consistent after a failure LaaG Datatios Failover
\ nx
3\ =
\\§ —
A\ —

\ Datacenter A Datacenter B Datacenter C Standby Server
§

© 2024 - Dr. Basit Qureshi 31

V4

7

\

N\

Q¢
§§
N\ \

\
N
\ N
\
N\
N\
\ \
\ NN
\ RN
\ N

DISTRIBUTED SYSTEM CHALLENGES

4. Security

* Traditionally managed by operating systems
e Users authenticate themselves to the system
e Each user has a unique user ID (UID)
* Access permissions = f(UID)

* Now applications must take responsibility for
* |dentification,
* Authentication,
* Access control,
* Encryption,
* Tamper detection,
e Audit trail

© 2024 - Dr. Basit Qureshi

Identification

Access control

Tamper
detection

Authentication

Encryption

Audit trail

7%

\

74

DISTRIBUTED SYSTEM CHALLENGES

4. Security

* The environment
* Public networks, remotely-managed services, 3rd party services
e Trust: do you trust how the 3rd party services are written & Cryptography
managed?
* Some issues:
* Malicious interference, bad user input, impersonation of users &
services
* Protocol attacks, input validation attacks, time-based attacks, Encryption
replay attacks
e Rely on cryptography (hashes, cryptography) for identity
management, authentication, encryption, tamper detection ...
and also rely on good defensive programming!

"\ © 2024 - Dr. Basit Qureshi

Authentication

Tamper
detection

33

© 2024 - Dr. Basit Qureshi

CS435 DistributelEaManl

’ 4
»

4

DISTRIBUTED s .
SYSTEMS "s+Dr. Basit Qureshi

ARCHITECTURE (s SRR E MACM
- ob 3it.Q g' ‘ >

g o

—p _-‘ | : v ' ‘J -2

-

7,

A\

,////"'

ARCHITECTURE

 Layered architecture

 Object architecture Actual node
» Data-centric architecture 27/
- Event-based architecture ... 2:6

- Middleware T

24
e Centralized |

* Peer to Peer 5
« Hybrid

3, Node responsible for

keys {5,6,7,8,9}

7

b,

2

© 2024 - Dr. Basit Qureshi 35

~ ARCHITECTURE

 Layered architecture
« Components organized as layers
» Information flows through layers.

 Any layer can not directly communicate with Layer N
another layer

* No intermediate layer can be skipped!

Layer N-1

2

g

Request Flow
Response Flow

2.

/ ,z,m%

Layer 2

7 75

© 2024 - Dr. Basit Qureshi 36

////////////////
V Z

Z

7

W/

i,

7% ,/4/////

%

ARCHITECTURE

 Layered architecture
» Advantage:

» 1. Each layer can be modified independently without affecting the
whole system.

» 2. Calls always follow a predetermined path and that each layer is

simple to replace or modify without affecting the architecture as a
whole.

« Examples: Network Open System Interconnection (OSI) model.

Request Flow Request Flow Request Flow

Layer N Layer N-1 Layer 1

Response Flow Response Flow Response Flow

© 2024 - Dr. Basit Qureshi

37

» //////////////
M/////

7’ ,m////

ARCHITECTURE

* Object based architecture

« Contains an arrangement of loosely coupled
objects.

 Objects can interact with each other through
method calls

* e.g2. Remote Procedure Call (RPC)

mechanism or Remote Method Invocation
(RMI) mechanism.

« Examples: REST API Calls, Web Services, Java
RMI

© 2024 - Dr. Basit Qureshi

‘/‘
.\‘

38

////////////////////
g

4/

714

N

ARCHITECTURE

e Data centric architecture

« Works on a central data repository, either
actively or passively

 All the components are connected to this data
repository.

e Producer-consumer communication model:

* Producer produces items to the common
data repository

» Consumer (individual) can request data
from the common data repository

« Example: Web-based E-commerce systems

© 2024 - Dr. Basit Qureshi

[Component A]

N\

Persistent Data Space

|

[Component B

39

ARCHITECTURE

e Event based architecture

« Events are present at the center in the Event bus
and delivered to the required component as
needed

 When an event occurs, the system, as well as
the receiver, get notified. Data, URLs etc are
transmitted through events.

« Components are loosely coupled. i.e., it’s easy
to add, remove, and modify components.

« Example: Enterprise services buses; akka.io

© 2024 - Dr. Basit Qureshi

Component

Component

A& akka

40

ARCHITECTURE

» Middleware: The OS of Dist Systems

“The placement of components of a distributed system across multiple machines”

» Three possible architecture models
« Centralized: Client-Server

* De-centralized: Peer-to-Peer
« Hybrid

Same interface everywhere

Computer 1 Computer 2

Computer 3 Computer 4
| |
Appl. A Application B Appl. C
| I% \I | [| [
Distributed-system layer (middleware)
Local OS 1 Local OS 2 Local OS 3 Local OS 4

Network
© 2024 - Dr. Basit Qureshi

41

ARCHITECTURE: CLIENT-SERVER MODEL

* Centralized / Client-Server model

« Every node is connected to a central coordination system

» Client - This is the first process that issues a request to the second process i.e. the server.
« Server - This is the second process that receives the request, carries it out, and sends a

reply to the client.

© 2024 - Dr. Basit Qureshi

The Client-Server Model

42

N\

ARCHITECTURE: CLIENT-SERVER MODEL

 Client-server interaction/request-reply behavior.

 Server: a process that implements a service (exp: file system service, database service).
 Client: a process that requests a service from a server

« Communication between a client and a server can be:

« Connectionless protocol [if reliable connection available].
« Connection oriented protocol [otherwise, e.g. TCP/IP].

\
\
\\ Wait for result
§\\ Client ——--------
1
\ Request Reply
\\\< __________________________
A\ Server
\

7

Provide Service Time

© 2024 - Dr. Basit Qureshi

43

M7

4 / 7
24 A 97/ L
7 74
/'///‘,fy’%/
Y e

w2z

ARCHITECTURE: CLIENT-SERVER MODEL

e 2-tier Client server architecture
 The servers need not know about clients
* The clients must know the identity of servers

« Mapping of processors to processes is not
necessarily 1 : 1

* Thin Client Model

 Server: Application processing and data
management

 Client: Provide interface of the application

e Thick Client Model

 Server: Data management only
 Client: Complex data processing and interface

© 2024 - Dr. Basit Qureshi

User interface business rules data access

Client

Network
User interface business rules data access Data Server

2 - Tier Client Server Architecture

44

i

V7 7,

4

N NN
\

A\

ARCHITECTURE: CLIENT-SERVER MODEL

e n-tier Client server architecture

« Multi tier allows separate tier for a functionality of an application

User interface
(presentation)

 3-tier is common with Web/App-server, DB-server and Client-browser

© 2024 - Dr. Basit Qureshi

Wait for result

Reque.st Return
operation result
Application _____________ _Aﬁ'f _f(_)[_d_a_t? _________________
server
Request data Return data
Database
server

45

- ARCHITECTURE: CLIENT-SERVER MODEL

 3-tier arch. example:

i User Interface |«
 Internet Search Interface
. Leve R ——— e ——— | e g —
Engine
HTML page
HTML Generator containing List
Y
| Processing
Level Query Generator
\ Ranking
\ Algorithm Ranked List of
Q\\ Database pages
'\ Queries
\ STt Al == = = =2 = SN = = = = =
\\\ Data Level
\ Web Page
3 Database Information

Internet search engine into three different layers

721 A ////”/

© 2024 - Dr. Basit Qureshi 46

g

ARCHITECTURE: CLIENT-SERVER MODEL

 n-tier arch. example:

« An MS Azure
application using
multiple Virtual
Machines

DMZ Web tier Business tier Data tier

El-

SQL Server
(primary)

Load : Load Load

Load
Internet balancer : balancer balancer balancer
VA M
: N SQL Server
S (secondary)
o r -
@ f
"o B
: i M
zure Portal :
DevOps . Bastion

Virtual network

AzureBastionSubnet |

"\ ©2024- Dr. Basit Qureshi

////////////////////
g

2

4/

© 2024 -

ARCHITECTURE: P2P MODEL

* De-Centralized / Peer to Peer
model

 No central control

A node can either act as a client or
server at any given time once it
joins the network

» Each node in the network has the
same set of responsibilities and
capabilities.

Dr. Basit Qureshi

Peer1 Peer 2
Shareable
i App
8p6/7 Objects 00
@ o/ ¥ 00
> l'I
Ap

App

Peer 4

48

ARCHITECTURE: P2P MODEL

e Benefits:

« Autonomy: Each node is independent of the other.

* Less costly: No need to buy an expensive server.
* No network manager

7%

Zant

.

« Adding nodes is easy: Adding, deleting, and repairing nodes in this
network is easy.

» LLess network traffic than in a client/ server network.
\ Challenges:

e [.ess secure

Y L

L
7

» Data is vulnerable. Stored in various nodes.
 Slow performance

© 2024 - Dr. Basit Qureshi

49

///////////////// A4

Y

Y L

/% //'//////

4,
4

ARCHITECTURE: P2P MODEL

* Organization:

« Structured P2P: Nodes adhere to a predefined distributed data structure.
« Unstructured P2P: Networks feature nodes that randomly select their neighbors.
organized functions.

« Hybrid P2P: Systems combine elements of both, with certain nodes assigned unique,

© 2024 - Dr. Basit Qureshi

50

" ARCHITECTURE: P2P MODEL

e Structured P2P:

« Typically maintains a Distributed Hash Table (DHT)

Each peer is responsible for a specific part of the content in the network.

Network use hash functions and assign values to every content and every peer.

A global protocol determines which peer is responsible for which content.

Whenever a peer wants to search for data, it uses the global protocol to determine the

/4////////////

,ﬂ,///
7

& /7/////

7 /%/,////'////

© 2024 - Dr. Basit Qureshi

peers responsible for the data and then directs the search towards the responsible peers.

51

NN

ARCHITECTURE: P2P MODEL

 Un-structured P2P:

» Lack a predefined organization or topology
for how nodes are connected.

« Do not rely on distributed hash table (DHT).
» More flexible and dynamic.

» They are often used for applications where
the focus is on simplicity, ease of

deployment, and adaptability.
Challenges:
 Scalability issues
* Increased search
 Efficiency
» Reliability.

© 2024 - Dr. Basit Qureshi

(¢) Gnutella/Overnet/eDonkey2000

52

* SYSTEM ARCHITECTURE: HYBRID MODEL
« Hybrid P2P/Client Server:

A combination of peer-to-peer and & o e
client-server models. / '\ P U / o
cluster L i i ~ 1
A common hybrid model is to have a \ N\ . —
central server that helps peers find each @‘—‘—> - \
other Y X ‘ &
» There are a variety of hybrid models, all of ot \) N
\ which make trade-offs between the S T
§\\ centralized functionality and pure peer- \ \ @
N _ ! ' « - «—> *
\\\\ to-peer unstruc.tured networks. 8 — Y N
§ Currently, hybrid models have better \ " ok / S \ |
§ performance than either pure & Pl &
\\\\\\ unstructured networks or pure structured @ duser
2\ networks.
A . S

Shunzhi Wang, Zhanyou Ma, Rong Wang et al. Performance analysis of a queueing system based on
working vacation with repairable fault in the P2P network, 21 September 2022, Supercomputing
[https://doi.org/10.21203/rs.3.rs-1864515/v2]

© 2024 - Dr. Basit Qureshi 53

V7

/////////////

W/

W/

74

7,

7

7,
g

7

77

v/

4/

&/ b

SYSTEM ARCHITECTURE: HYBRID MODEL

e Benefits
« Efficient Data Retrieval

« Scalability $ \
 Adaptability and Flexibility .: lm\ g L
« Fault Tolerance S— ,:
 Load Balancing J % \
* Dynamic Resource Discovery . -

 Challenges @

- - -~
, N
. .
4 cluster N
’ \
- A
’ o A\
i ~ \
i N \
\
! Y
! \ I
\ 1
\ ;
, I
\
.
~ \ ,
. ’
1 /
] ,
.
\ -
- - ~ [-
- :

’ g
’
’
’

A 4

~
~

~

-

« Complexity \ <\‘\ ,
e Overhead ~' @A/ J / J

|
St
i
~
I ~
I; .
¥, N
A
\
< G >
’ \
s \
\
.

« Consistency L e / R \ .'

* Increased Latency R / | $
o1 . \‘\‘ _,-” N cluster s

« Resource Utilization - R L B

 Security and Privacy Concerns e
‘g &

Shunzhi Wang, Zhanyou Ma, Rong Wang et al. Performance analysis of a queueing system based on
working vacation with repairable fault in the P2P network, 21 September 2022, Supercomputing
[https://doi.org/10.21203/rs.3.rs-1864515/v2]

© 2024 - Dr. Basit Qureshi 54

T

W A7/ 7 7 s

SYSTEM ARCHITECTURE: HYBRID MODEL

« Hybrid P2P-Client-
Srvr:

« Example: Spotify (before
2014)

9078 -
S oti W 2.4m tracks . -" \

'\ ©2024-Dr. Basit Qureshi
NN

' 9078

2.6m tracks

55

%

~ SYSTEM ARCHITECTURE: HYBRID MODEL

» Hybrid P2P-Client-
Srvr:
« Example: Bittorent

BTFS Network Architecture

/W/

L 4//!/

Soter (TRON-backed
repair hosts)

https://docs.btfs.io/v1.0/docs/what-is-btfs#architecture
\ © 2024 - Dr. Basit Qureshi

56

///////////////

ot

Z

77 //I//I/‘é

SYSTEM ARCHITECTURE: HYBRID MODEL

» Hybrid P2P-Client-
Srvr:

« Example: Deep Torrent
crawler

© 2024 - Dr. Basit Qureshi

BitTorrent
network

Torrent-discovery sites
N\

ainline monitor

I
Node

crawler

Message
sniffer

! G

]
(s

Passive
search

Active
search

Not present
in crawling

Figure 1. Functional architecture of the Deep Torrent crawler.

Rodriguez-Gémez, Rafael et al. “On Understanding the Existence of a Deep Torrent.” IEEE
Communications Magazine 55 (2017): 64-69.

57

N\ NN

" SYSTEM ARCHITECTURE: HYBRID MODEL
» Hybrid P2P-Client-

Srvr . Blockchain data structure Peer-to-peer overlay network
* Example: Bitcoin, h P N \
Etherium Blockchain Slock o
(Genesis Block n-1 Block n .
Block) “ep g
S0BTC Transaction D Transaction G
Transaction £ Transaction H
Block Propagation
Wallet

Y. Shahsavari, K. Zhang and C. Talhi, "Performance Modeling and Analysis of the Bitcoin Inventory
Protocol," 2079 IEEE International Conference on Decentralized Applications and Infrastructures
(DAPPCON), Newark, CA, USA, 2019, pp. 79-88, doi: 10.1109/DAPPCON.2019.00019.

© 2024 - Dr. Basit Qureshi 58

SYSTEM ARCHITECTURE: HYBRID MODEL
« Hybrid P2P-Client-Srvr:

« Other Examples: Gnutella, eDonkey, Kazaa, Napster,
Skype etc

(®) eDonkey2000: DO VOO — g @ n u teIIa

@ ;; @ 0 -4 Support the donkey. Register today. f{e()onkey

(DAL P puvmucs of am
connecting dsconnected options help h = I-{'"“" oy

Q)’ P {’D soxch Q traralers @J shared

ey = B o~ ~ TR
12) meda () corslogs (O friends :ﬁ(j\ RS @ servers

Dowricads: O Sources: 0

§ Nare Kom Soe Trondfered Speed (KB/s) Tme Frogress

\ \\ o @ 9
\} d B S e B T i | s Y v
\\\\\ Upicads: O Queve Lengh: 0 '—;‘;E_'.m S
A\

larre User Soeed (KB3) Trarsfered I —— - v — mm s""n pp— il

\ = | 3 ey @
=
-

\§§ Upload Queue net loaded .
\\ ON) Users: 0 Fles: Unknown Testing Frewal Dowry 00 _ s

’ . Qoll - &
- N - o —~r T~ 2
¥ 7ot er o VT b s a: |
© 2024 - Dr. Basit Qureshi [- .

© 2024 - Dr. Basit Qureshi

CS435 DistributelEaManl

. 4
B

4

DISTRIBUTED " ».Dr. Blisit Qureshi
SYSTEMS SERVICES SRR S\ TEEE MACM

‘ -» . ”g:",,"" >
) - .)
—p S | : v . “ -2

-

~ DISTRIBUTED SYSTEMS SERVICES

* A distributed system is a collection of services accessed via network
interfaces

Data storage
service

Data

\
§ normalization
\ service
i\\\ Data storage
\ §\ service
\\\\
Y
\ Data analytics
\ service
A\
i\
§ Client access Web client

\ service service

© 2024 - Dr. Basit Qureshi

W/////////

7 L i %

DISTRIBUTED SERVICES

* Serverless Computing: Developers focus on writing code without worrying
about infrastructure management.

* Edge Computing: Bringing computing resources closer to the data source,
enabling faster processing and reduced latency.

* Container Orchestration: Simplifying the deployment and management of
distributed services using container orchestration platforms.

© 2024 - Dr. Basit Qureshi 62

N\

" DISTRIBUTED SERVICES

* Serverless Computing:

* Depends on underlying physical servers, however there is no server hardware or
operating system environment to manage for developers or IT engineers.

* Abstracts applications from the underlying server and operating system, serverless
functions are easier to deploy and manage

* Event-driven computing; use resources as you go; deploy serverless functions and
APIs

* More efficient than conventional applications that run constantly

Google Cloud

§\\ e Auto-scaling enabled, cost-effective
\
3\ Azure
\ S
\ erverless
x§ C .
3 AWS Lambda omputing

© 2024 - Dr. Basit Qureshi

S,

i

7 /%//////////M

DISTRIBUTED SERVICES
* Edge Computing:

* Moves some portion of storage and compute resources out of the central
data center and closer to the source of the data itself.

« Compute, Store, Network, Service closer to the data-source.
* Lighter, faster, efficient, cheaper.

« Examples: Security system monitoring, loT devices, Self-driving cars,
Medical monitoring devices, Video conferencing etc.

4 CLOUDFLARE

© 2024 - Dr. Basit Qureshi

64

M7

w2z

DISTRIBUTED SERVICES

e Kubernetes and Container Orchestration

* A container is a standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one computing unit

e Container orchestration automatically provisions, deploys, scales, and manages
containerized applications without worrying about the underlying infrastructure.

* Developers can implement container orchestration anywhere containers are,
allowing them to automate the life cycle management of containers.

0 |
Ve 2
R | v | M IR

© 2024 - Dr. Basit Qureshi

65

///////////////// 4

2l
/ ///////////////

L

* Distributed Systems Themes
* Dist. Sys. Challenges

* Dist. Sys. Architectures

* Distributed Services

