
© 2024 - Dr. Basit Qureshi

PARALLEL	
PROCESSING

(A)

TOPICS
• Parallel computing
• Parallel programming
• Java Threads Library
• Parallel program using Shared Memory

Most of the content in these set of slides is based on “A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency”, Dan
Grossman, online notes, version Feb 2012

© 2024 - Dr. Basit Qureshi 2

© 2024 - Dr. Basit Qureshi

PARALLEL	COMPUTING

PARALLEL	COMPUTING
So far, most or all of your study of computer science has assumed that

one thing happens at a time
• This is sequential programming
• Everything is part of one sequence

1 2 3 4 . . .

© 2024 - Dr. Basit Qureshi 4

PARALLEL	COMPUTING
Parallelism: Divide and Conquer ??

• Opportunities
• Divide work among threads of execution
• Faster runtimes
• Thread programming
• More throughput = speedup
• Concurrent access to resources

• Challenges
• Harder to write parallel code
• Performance issues
• Concurrency issues

1 2 3

7 8

4 5 6

9 . .

© 2024 - Dr. Basit Qureshi 5

PARALLEL	COMPUTING
Supercomputing

• Since 1960s

• First IBM UNIVAC_LARC in Lawrence Livermore
National Laboratory

• LARC supported multiprocessing with two CPUs (called
Computers) and an input/output (I/O) Processor
(called the Processor).

• One addition operation tool about 4 microseconds

https://en.wikipedia.org/wiki/UNIVAC_LARC

© 2024 - Dr. Basit Qureshi 6

PARALLEL	COMPUTING
Supercomputing

• The ILLIAC IV was the first massively parallel computer.

• Had 256 64-bit floating point units (FPUs).
• 4 central processing units (CPUs) were able to process

1 billion operations per seconds.
• Eventually had 16 processors due to cost escalation.

• 1976: Runs first successful application.

• Cost for one machine > 31 million USD (1972)
• Max 50 Floating Point Operations per Second(FLOPS) G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick and R. A. Stokes, "The

ILLIAC IV Computer," in IEEE Transactions on Computers, vol. C-17, no. 8, pp. 746-
757, Aug. 1968, doi: 10.1109/TC.1968.229158.

ILLIAC IV Processing Unit and Control Unit
https://en.wikipedia.org/wiki/ILLIAC_IV

© 2024 - Dr. Basit Qureshi 7

PARALLEL	COMPUTING
1980-2005: Era of Desktop Computers

• Availability of Uni-processor; cheaper computing!

• Uni-(micro) processors became exponentially faster at
running sequential programs

• Traditional doubling of clock speeds every 18–24
months

• Need for parallelism declined

• 2005 -> Reached the limits !
• Power wall: Increasing clock rate generates too much

heat. Power consumption increases
• Memory wall: Increasing clock rate generates larger

gaps in memory-CPU speeds
• Parallelism wall: Increasingly difficult to write parallel

programs to keep the processor busy
• Cooling constraints limit increases in microprocessor

clock speeds

Intel 8080 processor: 1975, 4,500 transistors

Intel Pentium Pro, 1995, 5.5 million transistors

© 2024 - Dr. Basit Qureshi 8

PARALLEL	COMPUTING
2005 onwards: Moores Law

• Make wires exponentially smaller

• System-on-Chip (SoC) Design: Multiple
components on one Integrated Circuit

• 2007: First Dual core processors in market
(Intel, AMD)

• 2008 onwards: Multiple-cores on one SoC

• 2010+, the level of parallelism on a single
microprocessor now rivals the number of
nodes in the most massively parallel
supercomputers of the 1980s

• 2020+, extreme scale High Performance Cluster
(HPC) systems are anticipated to have on the
order of 100,000–1,000,000 sockets, with each
socket containing between 100 and 1000
heterogeneous cores

Intel Core 2 Duo, 2007

AMD Athlon X2 6400+, 2007

Diagram of a generic dual-core processor

© 2024 - Dr. Basit Qureshi 9

PARALLEL	COMPUTING

https://www.ibm.com/topics/supercomputing© 2024 - Dr. Basit Qureshi 10

PARALLEL	COMPUTING
• Performance

• Supercomputing is
measured in floating-point
operations per second
(FLOPS).

• Petaflops are a measure of a
computer's processing
speed equal to a thousand
trillion flops.

• 1-petaflop computer system
can perform one quadrillion
(1015) flops.

• Fastest Computer in the
world (2020)
• Fugaku (Kobe-JAPAN)

• Cores: 7,630,848
• Max FLOPS: 442.01 PFLOPS

or (537,212,000 Giga FLOPs)
• Power: 30 MW
• 24,710 U.S. households

annually

https://www.ibm.com/topics/supercomputing

https://www.fujitsu.com/global/about/innovation/fugaku/

© 2024 - Dr. Basit Qureshi 11

PARALLEL	COMPUTING
What to do with multi-processors?

• Run multiple totally different programs at the same time
• Already do that by time-slicing

• Do multiple things in ONE program
• More difficult
• Need to re-think writing parallel programs

• Using multiple cores
• Using Memory
• Using I/O
• Using appropraite structures to support parallelism

• Writing parallel programs (Painful!)
• Manage complexity, follow principles of parallelism
• Manage concurrency

© 2024 - Dr. Basit Qureshi 12

PARALLEL	COMPUTING

Parallel: Use extra computational
resources to solve a problem faster

Concurrent: Correctly and efficiently
manage access to shared resources

A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, Dan Grossman, online notes, version Feb 2012

© 2024 - Dr. Basit Qureshi

13

PARALLEL	COMPUTING
• Understanding Parallelism with Analogy
• A Serial Program:

• One player dribbles and scores goal

• A parallel Program:
• Use a team of 11 players. Each player has a role

to play (Goal-keeper, Defender, Midfielder,
Forward Striker) [Role decomposition]

• Assign tasks to each set of players (corner, free-
kick, penalty taking, pressing, defending etc)
[Task Decomposition]

• Have extra help/resources e.g. substitutes [work
pool]

• Problem: Coordination!

© 2024 - Dr. Basit Qureshi 14

PARALLEL	COMPUTING
• Understanding Concurrency with Analogy
• Concurrency:

• Too many players on the pitch, but only ONE ball
and TWO goal posts.

• Need to manage the game within game-
constraints (90-minute time, half-time etc)

• Avoid hand-balls, corners, penalty kicks etc

© 2024 - Dr. Basit Qureshi 15

PARALLEL	COMPUTING
• In reality: Parallelism and concurrency are mixed

• Common to use threads for both

• If parallel computations need access to shared
resources, then the concurrency needs to be
managed

• Threads, Processes, Mutual Exclusion, Shared
memory, Inter-process-communication, etc

• In this course, we will first cover parallelism and later Concurrency

© 2024 - Dr. Basit Qureshi 16

PARALLEL	COMPUTING
• In reality: Parallelism and concurrency is everywhere
• Operating Systems
• Real time systems
• MMPOG games
• GPU based systems
• AI/ML based systems
• ChatGPT
• Animated Movies: CGI Render Farms

© 2024 - Dr. Basit Qureshi 17

https://www.sabrepc.com/blog/Deep-Learning-and-AI/render-farms-for-cgi

https://sciencebehindpixar.org/pipeline/rendering

PARALLEL	COMPUTING
• So what is a parallel computer?
• A computer with a CPU with 2-cores?
• or A computer with 2 or more CPU each with 2 or more cores?
• or 2 or more computers with 1 or more multi-core processors?
• or a computer with a GPU (1200+ cores)?
• Or multiple computers with many GPUs?
• Data Center?
• Cloud?

© 2024 - Dr. Basit Qureshi 18

PARALLEL	COMPUTING
• What about Memory Parallelism?
• Serial Bus connecting memory and processor
• A shared memory Computer
• Distributed Memory Computer

© 2024 - Dr. Basit Qureshi 19

PARALLEL	COMPUTING
The Shared Memory Multiprocessor (SMP)
• All memory is placed into a single (physical) address space.

• Processors connected by some form of interconnection network.

• Single virtual address space across all of memory.

• Each processor can access all locations in memory.

• Processes must communicate in order to synchronize or exchange data using the memory space.

© 2024 - Dr. Basit Qureshi 20

© 2024 - Dr. Basit Qureshi

PARALLEL	
PROGRAMMING

PARALLEL	PROGRAMMING
• In recent times, the technology has converged around 3 programming

environments:
• OpenMP: simple language extension to C, C++ and Fortran to write parallel

programs for shared memory computers (shared memory model)
• MPI: A Message Passing Library used on clusters and other distributed memory

computers (message passing model)
• Java language features: support parallel programming on shared memory

computers and standard class libraries supporting distributed computing (shared
memory model AND message passing model)

© 2024 - Dr. Basit Qureshi 22

PARALLEL	PROGRAMMING
• To write a shared-memory parallel program, need new primitives from a

programming language or library
• Threads are ways to create and run multiple things at once.
• Shared memory can be utilized by threads to share/update data.
• Synchronize the execution of tasks/primitives using threads.

© 2024 - Dr. Basit Qureshi 23

PROCESSES	AND	THREADS
• Process originates from operating systems.

• A unit of resource allocation both for CPU time and for memory.
• A process is represented by its code, data and the state of the machine registers.
• The data of the process is divided into global variables and local variables, organized as a stack.
• Generally, each process in an operating system has its own address space and some special action

must be taken to allow different processes to access shared data.

© 2024 - Dr. Basit Qureshi 24

PROCESSES	AND	THREADS
• Thread:

• The traditional OS process has a single thread of control – it has no internal concurrency.
• Not suitable for shared memory multiprocessors
• Modern operating systems permit an operating system process to have multiple threads of control.
• How? Make multiple stacks of local/global variables, one for each thread.

© 2024 - Dr. Basit Qureshi 25

PARALLEL	PROGRAM
• A sequential program has a single thread of control
• A parallel program has multiple threads of control

• Can perform multiple computations in parallel
• Can control multiple simultaneous external activities
• Threads from the same process share memory (data and code).
• They can communicate easily, but it's dangerous if you don't protect your variables correctly.

© 2024 - Dr. Basit Qureshi 26

PARALLEL	PROGRAM	IN	JAVA
• Java SE 7 introduced the Fork/Join framework. It was designed to make

divide-and-conquer algorithms easy to parallelize

java.lang.Thread

• Operations to create and initialize basic threads and control their
execution
• The Java Virtual Machine
• Executes as a process under any operating system
• Supports multiple threads. Each Java thread has its own local variables organized as

a stack and threads can access shared variables.

© 2024 - Dr. Basit Qureshi 28

PARALLEL	PROGRAM	IN	JAVA
• A Thread class manages a single sequential thread of control. Threads

may be created and deleted dynamically.

• Thread class executes instructions from its method run().
• The actual code executed depends on the implementation provided

for run() in a derived class.

© 2024 - Dr. Basit Qureshi 29

PARALLEL	PROGRAM	IN	JAVA
Since Java does not permit multiple
inheritance, it is sometimes more
convenient to implement the run()
method in a class not derived from
Thread but from the interface
Runnable

© 2024 - Dr. Basit Qureshi 30

PARALLEL	PROGRAM	IN	JAVA
• So, there are two ways to create a basic thread in Java:
• Implement the Runnable interface (java.lang.Runnable)
• Extend the Thread class (java.lang.Thread)

• Allocation and construction of a Thread object do not cause the thread to run.
• To get a new thread running:
• 1. Define a subclass C of java.lang.Thread, overriding run
• 2. Create an object of class C
• 3. Call that object’s start method

• Not run, which would just be a normal method call

• start sets off a new thread, using run as its “main”

© 2024 - Dr. Basit Qureshi 31

PARALLEL	PROGRAM	IN	JAVA

© 2024 - Dr. Basit Qureshi 32

PARALLEL	PROGRAM	IN	JAVA

© 2024 - Dr. Basit Qureshi 33

© 2024 - Dr. Basit Qureshi

SHARED	MEMORY	IN	
JAVA:	A	SIMPLE	JAVA	

PROGRAM

34

The following set of slides are embedded and are based on
“A Sophomoric Introduction to Shared-Memory Parallelism
and Concurrency”, Dan Grossman, online notes, version
Feb 2012

PARALLEL	PROGRAM	IN	JAVA
The following program starts off with one thread and created 3 threads. Look at the output. What gives??

© 2024 - Dr. Basit Qureshi 35

class C extends java.lang.Thread {
int i;
C(int i) { this.i = i; }
public void run() {

System.out.println("Thread " + i + " says hi");
System.out.println("Thread " + i + " says bye");

}
}
class M {

public static void main(String[] args) {
for(int i=1; i <= 5; ++i) {

C c = new C(i);
c.start();

}
}

}

JAVA	THREAD	BASICS
We will first learn some basics built into Java via the provided java.lang.Thread	package
• We will learn a better library for parallel programming

To get a new thread running:
1. Define a subclass C of java.lang.Thread,
2. Override the run method
3. Create an object of class C
4. Call that object’s start method

start sets off a new thread, using run as its "main"

What if we instead called the run method of C?
• Just a normal method call in the current thread

© 2024 - Dr. Basit Qureshi 36

PARALLELISM	EXAMPLE:	SUM	AN	ARRAY
Have 4 threads simultaneously sum 1/4 of the array

Approach:
• Create 4 thread objects, each given a portion of the work

• Call start() on each thread object to actually run it in parallel
• Somehow ‘wait’ for threads to finish

• Add together their 4 answers for the final result

Warning: This is the inferior first approach, do not do this

ans0 ans1 ans2 ans3

ans

© 2024 - Dr. Basit Qureshi 37

CREATING	THE	THREAD	SUBCLASS

© 2024 - Dr. Basit Qureshi 38

class SumThread extends java.lang.Thread {

 int lo; // arguments
 int hi;
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void run() { //override must have this type
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

Because	we	override	a	no-arguments/no-result	run,	we	use	
fields	to	communicate	data	across	threads

We will ignore handling the case
where:

arr.length % 4 != 0

CREATING	THE	THREADS	WRONGLY

© 2024 - Dr. Basit Qureshi 39

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++) // do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

We forgot to start the
threads!!!

CREATING	THE	THREADS	WRONGLY

40

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){ // do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

We start the threads and then assume they
finish right away!!! Concurrency??

JOIN:	THE	‘WAIT	FOR	THREAD’	METHOD
The Thread class defines various methods that provide primitive operations you could not
implement on your own
• For example: start, which calls run in a new thread

The join method is another such method, essential for coordination in this kind of computation
• Caller blocks until/unless the receiver is done executing (meaning its run method returns after its

execution)
• Without join, we would have a ‘race condition’ on ts[i].ans	in	which	the	variable	is	read/written	
simultaneously

This style of parallel programming is called fork/join"
• If we write in this style, we avoid many concurrency issues

• But certainly not all of them

© 2024 - Dr. Basit Qureshi 41

THIRD	ATTEMPT:	CORRECT	IN	SPIRIT

© 2024 - Dr. Basit Qureshi 42

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start();
 }
 for(int i=0; i < 4; i++) { // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 }
 return ans;
}

Note that there is no guarantee that ts[0] finishes before ts[1]
§ Completion order is nondeterministic
§ Not	a	concern	as	our	threads	do	the	same	amount	of	work

WHERE	IS	THE	SHARED	MEMORY?
Fork-join programs tend not to require [thankfully] a lot of focus on sharing memory
among threads
• But in languages like Java, there is memory being shared

In our example:
• lo, hi, arr fields written by "main" thread, read by helper thread

• ans field written by helper thread, read by "main" thread

When using shared memory, the challenge and absolute requirement is to avoid race
conditions
• While studying parallelism, we’ll stick with join

• With concurrency, we’ll learn other ways to synchronize

© 2024 - Dr. Basit Qureshi 43

© 2024 - Dr. Basit Qureshi

BETTER	ALGORITHMS:
PARALLEL	ARRAY	SUM

Keep in mind that Java was first released in
1995

© 2024 - Dr. Basit Qureshi 44

A	POOR	APPROACH:	REASONS
Our current array sum code is a poor usage of parallelism for several reasons

1. Code should be reusable and efficient across platforms
• "Forward-portable" as core count grows
• At the very least, we should parameterize the number of threads used by the algorithm

int sum(int[] arr, int numThreads){
 … // note: shows idea, but has integer-division bug
 int subLen = arr.length / numThreads;
 SumThread[] ts = new SumThread[numThreads];
 for(int i=0; i < numThreads; i++){
 ts[i] = new SumThread(arr,i*subLen,(i+1)*subLen);
 ts[i].start();
 }
 for(int i=0; i < numThreads; i++) {
 …
 }
 …

© 2024 - Dr. Basit Qureshi 45

A	POOR	APPROACH:	REASONS
Our current array sum code is a poor usage of parallelism for several reasons

2. We want to use only the processors "available now"
• Not used by other programs or threads in your program

• Maybe caller is also using parallelism
• Available cores can change even while your threads run

• If 3 processors available and 3 threads would take time X, creating 4 threads can have worst-case
time of 1.5X

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numThreads){
 …
}

© 2024 - Dr. Basit Qureshi 46

A	POOR	APPROACH:	REASONS
Our current array sum code is a poor usage of parallelism for several reasons

3. Though unlikely for sum, subproblems may take significantly different amounts of time
• Example: Apply method f to every array element, but maybe f is much slower for some data items

• Example: Determine if a large integer is prime?
• If we create 4 threads and all the slow data is processed by 1 of them, we won’t get nearly a 4x

speedup
• Example	of	a	load	imbalance

© 2024 - Dr. Basit Qureshi 47

A	BETTER	APPROACH:	COUNTERINTUITIVE
Although counter-intuitive, the better solution is to use a lot more threads beyond the number of
processors

1. Forward-Portable: Lots of helpers each doing small work
2. Processors Available: Hand out "work chunks" as you go

• If 3 processors available and have 100 threads, worst-case extra time is < 3% (if we ignore constant
factors and load imbalance)

3. Load Imbalance: Problem "disappears"
• Try to ensure that slow threads are scheduled early
• Variation likely small if pieces of work are also small

ans0 ans1 … ansN

ans

© 2024 - Dr. Basit Qureshi 48

BUT	DO	NOT	BE	NAÏVE
This approach does not provide a free lunch:

Assume we create 1 thread to process every N elements

Combining results will require arr.length / N	additions
• As N increases, this becomes linear in size of array
• Previously we only had 4 pieces, Ө(1) to combine

In the extreme, suppose we create one thread per element
• Using a loop to combine the results requires N iterations

int sum(int[] arr, int N){
 …
 // How many pieces of size N do we have?
 int numThreads = arr.length / N;
 SumThread[] ts = new SumThread[numThreads];
 …
}

© 2024 - Dr. Basit Qureshi 49

A	BETTER	IDEA:	DIVIDE-AND-CONQUER

Straightforward to implement

Use parallelism for the recursive calls
• Halve and make new thread until size is at some cutoff
• Combine answers in pairs as we return

This starts small but grows threads to fit the problem

+ + + + + + + +
+ + + +

+ +
+

© 2024 - Dr. Basit Qureshi 50

DIVIDE-AND-CONQUER
public void run(){ // override
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}

int sum(int[] arr){
 SumThread t = new SumThread(arr,0,arr.length);
 t.run();
 return t.ans;
}

© 2024 - Dr. Basit Qureshi

51

DIVIDE-AND-CONQUER	REALLY	WORKS
The key is to parallelize the result-combining
• With enough processors, total time is the tree height: O(log	n)	
• This is optimal and exponentially faster than sequential O(n))
• But the reality is that we usually have P < O(n) processors

Still, we will write our parallel algorithms in this style
• Relies on operations being associative (as with +)
• But will use a special library engineered for this style

• It takes care of scheduling the computation well
© 2024 - Dr. Basit Qureshi 52

+ + + + + + + +
+ + + +

+ +
+

BEING	REALISTIC
In theory, you can divide down to single elements and then do all your result-combining in parallel and get
optimal speedup

In practice, creating all those threads and communicating amongst them swamps the savings,

To gain better efficiency:
• Use a sequential cutoff, typically around 500-1000

• Eliminates almost all of the recursive thread creation because it eliminates the bottom levels of the
tree

• This is exactly like quicksort switching to insertion sort
for small sub problems, but even more important here

• Be clever and do not create unneeded threads
• When creating a thread, you are already in another thread
• Why not use the current thread to do half the work?
• Cuts the number of threads created by another 2x

© 2024 - Dr. Basit Qureshi 53

HALVING	THE	NUMBER	OF	THREADS

If a language had built-in support for fork-join parallelism, we would
expect this hand-optimization to be unnecessary

But the library we are using expects you to do it yourself
• And the difference is surprisingly substantial
• But no difference in theory

// wasteful: don’t
SumThread left = …
SumThread right = …

// create two threads
left.start();
right.start();
left.join();
right.join();
ans=left.ans+right.ans;

// better: do
SumThread left = …
SumThread right = …

// order of next 4 lines
// essential – why?
left.start();
right.run();
left.join();
ans=left.ans+right.ans;

© 2024 - Dr. Basit Qureshi 54

ILLUSTRATION	OF	FEWER	THREADS

+
8

+
 9

+
10

+
 11

+
12

+
 13

+
14

+
 15+

4
+

 5
+

6
+

 7
+

3
+

 2+
1

+
5

+
 3

+
6

+
 2

+
7

+
 4

+
8

+
 1+

3
+

 2
+

4
+

 1
+

2
+

 1+
1

Two new threads
at each step and only leaves do
much work)

1 new thread
at each step

© 2024 - Dr. Basit Qureshi

55

LIMITS	OF	THE	JAVA	THREAD	LIBRARY
Even with all this care, Java’s threads are too heavyweight
• Constant factors, especially space overhead
• Creating 20,000 Java threads just a bad idea

The ForkJoin Framework is designed/engineered to meet the needs of divide-and-conquer fork-
join parallelism
• Included in the Java 7 standard libraries
• Also available as a downloaded .jar file for Java 6
• Section will discuss some pragmatics/logistics
• Similar libraries available for other languages

• C/C++: Cilk, Intel’s Thread Building Blocks
• C#: Task Parallel Library

• Library implementation is an advanced topic

© 2024 - Dr. Basit Qureshi 56

DIFFERENT	TERMS	/	SAME	BASIC	IDEAS

Don’t subclass Thread
Don’t override run
Do not use an ans field
Do not call start
Do not just call join
Do not call run to hand-optimize
Do not have a topmost call to run

Do subclass RecursiveTask<V>
Do override compute
Do return a V from compute
Do call fork
Do call join which returns answer
Do call compute to hand-optimize
Do create a pool and call invoke

To use the ForkJoin Framework:
§ A little standard set-up code (e.g., create a ForkJoinPool)

The Fundamental Differences:

See the Dan Grossman's web page for
"A Beginner’s Introduction to the ForkJoin Framework"

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSP
AC_forkJoinFramework.html

© 2024 - Dr. Basit Qureshi

57

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html

FINAL	VERSION	IN	FORKJOIN	FRAMEWORK
class SumArray extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // arguments
 SumArray(int[] a, int l, int h) { … }

 protected Integer compute(){// return answer
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 int ans = 0;
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 }
 else {
 SumArray left = new SumArray(arr,lo,(hi+lo)/2);
 SumArray right= new SumArray(arr,(hi+lo)/2,hi);
 left.fork();
 int rightAns = right.compute();
 int leftAns = left.join();
 return leftAns + rightAns;
 }
 }
}

static final ForkJoinPool pool = new ForkJoinPool();

int sum(int[] arr){
 return pool.invoke(new SumArray(arr,0,arr.length));
}

© 2024 - Dr. Basit Qureshi

58

FORKJOIN	VERSION	VS		THREADS	VERSION
class SumThread extends java.lang.Thread {
 int lo; int hi; int[] arr;//fields to know what to do
 int ans = 0; // for communicating result

 SumThread(int[] a, int l, int h) { … }

 public void run(){
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
 else { // create 2 threads, each will do ½ the work
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}

class C {
 static int sum(int[] arr){
 SumThread t = new SumThread(arr,0,arr.length);
 t.run(); // only creates one thread
 return t.ans;
 }
}

© 2024 - Dr. Basit Qureshi

59

class SumArray extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // arguments
 SumArray(int[] a, int l, int h) { … }

 protected Integer compute(){// return answer
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 int ans = 0;
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 }
 else {
 SumArray left = new SumArray(arr,lo,(hi+lo)/2);
 SumArray right= new SumArray(arr,(hi+lo)/2,hi);
 left.fork();
 int rightAns = right.compute();
 int leftAns = left.join();
 return leftAns + rightAns;
 }
 }
}

static final ForkJoinPool pool = new ForkJoinPool();

int sum(int[] arr){
 return pool.invoke(new SumArray(arr,0,arr.length));
}

GETTING	GOOD	RESULTS	WITH	FORKJOIN
Sequential threshold
• Library documentation recommends doing approximately

100-5000 basic operations in each "piece" of your algorithm

Library needs to "warm up"
• May see slow results before the Java virtual machine re-optimizes the library internals

• When evaluating speed, loop computations to see the "long-term benefit" after these optimizations
have occurred

Wait until your computer has more processors
• Seriously, overhead may dominate at 4 processors
• But parallel programming becoming much more important

Beware memory-hierarchy issues
• Will not focus on but can be crucial for parallel performance
© 2024 - Dr. Basit Qureshi 60

SUMMARY
• Writing parallel programs increases the processing speed, but does it??!!
• Threads implement parallelism using shared memory and multi-processors

on the same machine.
• Distributed System: Extend the concept to Clusters housing multiple

machines
• Java Threads in JDK 6
• ForkJoin Library in JDK 7

© 2024 - Dr. Basit Qureshi 61

