
© 2024 - Dr. Basit Qureshi

COMMUNICATION
(B)

1

Contd.

TOPICS
• Remote Procedure Calls (RPCs)
• Encoding messages
• ONC (Sun) RPC
• Microsoft DCOM/COM+
• Java RMI
• Python RPyC and xmlrpc
• RPC in a nutshell

2© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	
CALLS	(RPC)

3© 2024 - Dr. Basit Qureshi

PROBLEM	WITH	SOCKETS
Socket interface forces a read/write mechanism

You have to implement Read and Write stream for TCP/UDP Sockets

• Client Sends a bunch of bytes to Server (Write)

• Server reads the bytes (Read)

• Server writes the bytes to the Client (Write)

• Client reads the bytes (Read)

4

Is there a better option??

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 1984: Birrell & Nelson
• RPC: Allow programs to call procedures located on other machines
• Conceal communication
• No message passing at all is visible to the programmer.

• How?
• Stub functions!
• Gives the illusion (simulation) to the user that the call in local

5© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 1. Client calls stub (parameters on stack)

6

Operating System

Client methods

Client stub

Network calls

Operating System

Server methods

Server stub

Network calls

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 2. Stub marshals parameters to network

7

Operating System

Client methods

Client stub

Network calls

Marshal:
1. Set parameter for transmission over the network
2. Serialize messages
3. Initialize messages (method, objects, version etc)

Operating System

Server methods

Server stub

Network calls

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 3. Message sent to server over the Network.

8

Operating System

Client methods

Client stub

Network calls

Operating System

Server methods

Server stub

Network calls

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 4. Message received, sent to the server stub

9

Operating System

Client methods

Client stub

Network calls

Operating System

Server methods

Server stub

Network calls

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 5. Unmarshal parameters, call server methods

10

Operating System

Client methods

Client stub

Network calls

Operating System

Server methods

Server stub

Network calls

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 6. return from server methods

11

Operating System

Client methods

Client stub

Network calls

Operating System

Server methods

Server stub

Network calls

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 7. Marshal return value and send message

12

Operating System

Client methods

Client stub

Network calls

Operating System

Server methods

Server stub

Network calls

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 8. Transfer message over the network

13

Operating System

Client methods

Client stub

Network calls

Operating System

Server methods

Server stub

Network calls

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 9. Receive message at the client stub

14

Operating System

Client methods

Client stub

Network calls

Operating System

Server methods

Server stub

Network calls

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)
• 10. unmarshal return values, return to client

15

Operating System

Client methods

Client stub

Network calls

Operating System

Server methods

Server stub

Network calls

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)	– THE	GOOD
• Client stub has the same interface as the remote function
• So it looks the same as a local function but:
• Marshals parameters
• Sends message
• Wait for response from server
• Un-marshal the response and return data
• Generate exceptions if problems occur

• RPC allows procedure call interface
• Writing code is simplified
• No need to worry about sockets, ports, byte ordering etc.

16© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	CALLS	(RPC)	– CHALLANGES
• Transport protocol

• TCP? UDP? Or HTTP over TCP?
• Error Handling

• Complicated… prone to errors
• Parameter passing

• Pass parameters by value (Objects, Data-types) or references/pointers
• All data must be sent in a pointerless representation

• Service Binding
• Where/which machine is the server?
• How do we register server?
• Need to remember all machines IP addresses and port #s.
• Remember IP, Ports for each machine (local database?)

• Performance
• RPC is slower. Why (Compare to local procedure call)

• Security
• No encryption, so all messages are visible on network
• Authentication? Client/Server, 3rd party?

17© 2024 - Dr. Basit Qureshi

PROGRAMMING	RPCS
• Language support
• No default support for RPCs
• C, C++, Java < 5.0

• Some support
• Java > 6, Python, Go etc.
• No support for heterogeneous environment (e.g. java client talking to python

service)

• Solution
• Interface Definition Language (IDL): Describes RPC procedures
• Custom Compiler generates client/server stub

18© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

ENCODING	MESSAGES

19

RPC:	ENCODING MESSAGES
• On local systems, there are no data-type incompatability
• Int, double, String, Object etc

• Remote machine (incompatabilities occur)
• Different data type
• Different size of integer (128-bit, 64-bit, 32-bit, 16-bit etc)
• Different floating point (IEEE 754, 127-bit, 256-bit, NVIDIA TensorFloar (TF32)
• Different character set (Unicode, ASCII etc)
• Different Data Representation

20© 2024 - Dr. Basit Qureshi

RPC:	ENCODING MESSAGES
• Data Representation
• Big endian: The most significant byte in low memory
• IP Headers, Java VMs, etc

• Little endian: The most significant byte in high memory
• Intel x64, AMD arch.

• Bi-endian: Processor works with either mode
• ARM, SPARC V9, IA-64 Intel Itanium

21

byte[] a = new byte[4];
int n = 0x11223344;
a[0] = (byte) n;
a[1] = (byte) (n >> 8);
a[2] = (byte) (n >> 16);
a[3] = (byte) (n >> 24);
System.out.println("%02x, %02x, %02x,
%02x\n", a[0], a[1], a[2], a[3]);

Output on an Intel CPU:

44, 33, 22, 11

Output on a PowerPC:

11, 22, 33, 44

© 2024 - Dr. Basit Qureshi

3 + 2 (1 - 1)=3 or 0?

RPC:	ENCODING MESSAGES
• Serialization
• Standard encoding technique to enable communication between heterogeneous

systems
• How: Convert data to pointerless format, e.g. array of bytes
• Examples:
• JSON (JavaScript Object Notation)
• XDR (eXternal Data Representation)
• W3C XML Schema Language
• ASN.1 (ISO Abstract Syntax Notation)
• Google Protocol Buffers

22© 2024 - Dr. Basit Qureshi

RPC:	ENCODING MESSAGES
• Serialization
• Two approaches:
• Implicit type: Send only values; do not send data-types or parameters
• Ex: ONC XDR

• Explicit type: Type is sent with each value
• XML, JSON, ISO ASN.1

23© 2024 - Dr. Basit Qureshi

RPC:	ENCODING MESSAGES
Serialization vs Marshalling
• Serialization: Convert an object to a sequence of bytes that can be

transmitted.

• Marshalling: Bundle parameters into a form that can be unmarshalled (re-
constructed) by a different process. May include object ID and other state
information.

• Marshalling uses serialization

24© 2024 - Dr. Basit Qureshi

RPC:	ENCODING MESSAGES
XML: eXtensible Markup Language
• Benefits:
• Human read-able
• Human editable
• Text structure

• Drawbacks
• Transmit more data than needed
• Longer parsing time
• Data conversion required for

numbers

25

<ShoppingCart>
 <items>
 <item>
 <itemID> 1001 </itemID>
 <Title>Iphone 15 Max </Title>
 <Price>5700 </Price>
 </item>
 <item>
 <itemID> 2021 </itemID>
 <Title>Iphone 15 Max Skin </Title>
 <Price>12 </Price>
 </item>
 </items>
</ShoppingCart>

© 2024 - Dr. Basit Qureshi

RPC:	ENCODING MESSAGES
JSON: JavaScript Object Notation
• Light-weight compared to XML
• Based on Javascript
• Human readable
• Explcitly typed
• Includes support for RPC

invocation (JSON-RPC)

26

{
 “items”: [
 {
 “itemID”: 1001,
 “Title”: “Iphone 15 Max”,
 “Price”: “5700.00”
 }
 {
 “itemID”: 2021,
 “Title”: “Iphone 15 Max Skin”,
 “Price”: “12.00”
 }
]
}

© 2024 - Dr. Basit Qureshi

RPC:	ENCODING MESSAGES
Google Protocol Buffers
• Faster than XML and JSON
• Language Independent
• Each message is a set of names

and types
• Used within Google
• 48,000+ message types degined
• Used for RPC and storage

27

message Person{
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;
 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }
 message PhoneNumber
 {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }
 repeated PhoneNumber phone = 4;
}

Person person;
person.set_name(“John Smith”);
person.set_id(1234);
fstream output("myfile", ios::out | ios::binary);
person.SerializeToOstream(&output);

Learn more about Google Protcol Buffers: https://protobuf.dev/overview/
© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	
CALLS	(RPC):	

OPEN	NETWORK	
COMPUTING	(ONC)	RPC

OPEN	NETWORK	COMPUTING	(ONC)
• Open Network Computing (ONC)
• A framework for developing distributed computing applications in a network

environment.
• It was initially developed by Sun Microsystems (now Oracle) and is commonly

associated with the Network File System (NFS) protocol.
• Provides a set of protocols and APIs (Application Programming Interfaces) enabling

communication and resources sharing over a network

29© 2024 - Dr. Basit Qureshi

OPEN	NETWORK	COMPUTING	(ONC)
• ONC typically includes several key components:
• RPC (Remote Procedure Call): A protocol that allows a program to execute code on

a remote server as if it were local.
• NFS (Network File System): A protocol that enables remote file systems to be

accessed over a network.
• XDR (External Data Representation): A standard for defining data structures in a

platform-independent way, allowing data to be exchanged between systems with
different architectures.

• RPC for Unix System V, Linux, BSD, macOS
• Created by Sun (now Oracle)
• Defined in RFC 1831 (1995), RFC 5531 (2009)
• Remains in use mostly because of NFS (Network File System)

• Interfaces defined in an Interface Definition Language (IDL)
• IDL compiler is rpcgen

30© 2024 - Dr. Basit Qureshi

OPEN	NETWORK	COMPUTING	(ONC)
rpcgen name.x
• produces:
• name.h header
• name_svc.c server skeleton (stub)
• name_clnt.c client stub (proxy)
• [name_xdr.c] optional XDR data conversion

routines

• Function names derived from IDL function
names and version numbers
• Client gets pointer to result
• Allows it to identify failed RPC (null return)
• Reminder: C doesn’t have exceptions!

31

name.x

program GETNAME {
 version GET_VERS {
 long GET_ID(string) = 1;
 string GET_ADDR(long) = 2;
 } = 1; /* version */

version GET_VERS2 {
long GET_ID(string) = 1;
string GET_ADDR(string) = 2;

} = 2; /* version */
} = 0x31223456;

Interface definition: version 2

© 2024 - Dr. Basit Qureshi

OPEN	NETWORK	COMPUTING	(ONC)
Server
• Creates a socket, binds to “any” available local port
• Calls a function in the RPC library:
• Svc_register, register program #, port #, protocol (TCP/UDP)
• Contacts port_mapper, rpcbind
• Name server
• Keep track of {program#, version#, protocol -> port# etc}

• Server then listens and waits to accept client
connections

32© 2024 - Dr. Basit Qureshi

OPEN	NETWORK	COMPUTING	(ONC)
Client
• Calls clnt_create {Server_Name, program#, Version#, Protocol (TCP/UDP)}

• Clnt_create contact port mapper on the server to bind port (done
once)
• Communications:
• Marshalling to XDR format (eXternal Data Representation)

33© 2024 - Dr. Basit Qureshi

OPEN	NETWORK	COMPUTING	(ONC)
Whats good!
• No need to worry about unique port for binding
• Protocol can be selected at run-time
• Programmer: No need to worry about message boundaries, fragmentation,

disassembly/re-assembly.
• Application: Need to know only ONE transport address (rpcbind process)
• Function call instead of send/receive
• Versioning support between client & server

Challenges
• Managing multiple machines (Need to know which machine provides service)

Distributed Computing Environment (DCE) RPC improved Sun RPC

34© 2024 - Dr. Basit Qureshi

OPEN	NETWORK	COMPUTING	(ONC)
Distributed Computing Environment (DCE) RPC
• Improved Sun RPC
• DCE RPC uses Interface Definition Language (IDL) to define the interfaces and data

structures
• DCE RPC includes built-in support for security features such as authentication,

encryption, and access control
• DCE RPC provides mechanisms for error detection and handling

• Superseded by RESTful APIs

35© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	
CALLS	(RPC):	
MICROSOFT	

TECHNOLOGIES

MICROSOFT	COM+/DCOM
• COM+: Windows 2000
• Component Object Model (COM)
• Supports transactions, resource pooling, publish-subscribe

communications

• Service Control Manager (SCM)
• Starts at OS boot.
• Works as a RPC server
• Maintains a Database of installed devices
• Requests creation of object on server

• Surrogate process runs components: dllhost.exe
• A process that loads DLL-based COM objects

• Multi-threaded: Can handle multiple clients
simultaneously

37© 2024 - Dr. Basit Qureshi

MICROSOFT	COM+/DCOM
• Communication through ObjectRPC (ORPC)
• Based on DCE RPC protocol

• Marshalling mechanism: NDR
• Same as Network Data Representation used by DCE RPC

• Microsoft Interface Definition Language (MIDL)
• MIDL files are compiled with a IDL compiler
• Same as DCE IDN

• Generates C++ code for marshalling, unmarshalling & stubs

38© 2024 - Dr. Basit Qureshi

MICROSOFT	COM+/DCOM
•Microsoft Contributions
• Object Lifetime (terminate after time expired)
• Abnormal Client termination (terminate non-responding clients)
• Client Pinging (Heart-beat / Breathing – ensure the clients are

“awake”)
• Fits into Microsoft COM model
• Generic server hosts dynamically loaded objects
• Deal with “dead” clients
• Heart-beat counting and pinging

• Works only with Microsoft technologies!

39© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	
CALLS	(RPC):	
JAVA	RMI

JAVA	RMI
Java RMI (Remote Method Invocation) is a Java API
• Facilitates communication between different Java Virtual Machines (JVMs)

over a network
• Allows Java objects to invoke methods on remote Java objects residing in

different JVMs

RMI is built for Java only!
• No goal of OS interoperability
• No language interoperability
• No architecture interoperability
• No need for external data representation
• All sides run a JVM
• Benefit: simple and clean design

41© 2024 - Dr. Basit Qureshi

JAVA	RMI

• Client: Invokes
method on remote
object
• Server: Process that

owns the remote
object
• Registry: Nameserver

that relates objects
with names

42

– Skeleton
Server-side code that calls the actual remote object implementation
– Stub
Client-side proxy for the remote object
Communicates method invocations on remote objects to the server

© 2024 - Dr. Basit Qureshi

JAVA	RMI
1. Interface Definition: Define interfaces that describe the methods
that will be invoked remotely.

43© 2024 - Dr. Basit Qureshi

JAVA	RMI
2. Implementation: Provide an implementation of the remote
interface. This implementation class must extend
java.rmi.server.UnicastRemoteObject and implement the remote
interface.

44© 2024 - Dr. Basit Qureshi

JAVA	RMI
3. Server Setup: Create and start an RMI registry on the server side.
The RMI registry provides a naming service that allows clients to look
up remote objects by name. Here we “bind” “MyRemoteObject” to
the registry.

45© 2024 - Dr. Basit Qureshi

JAVA	RMI
4. Client Invocation: On the client side, look up the remote object
from the RMI registry using its name and then invoke its methods as
if they were local. Here LocateRegistry.getRegistry binds to the
registry; the registry.lookup finds the “MyRemoteObject” object.

46© 2024 - Dr. Basit Qureshi

JAVA	RMI
Similarity to local objects
• References to remote objects can be passed as parameters
• You can execute methods on a remote object
• Objects can be passed as parameters to remote methods
• Object can be cast to any of the set of interfaces supported by the implementation
• Operations can be invoked on these objects

47© 2024 - Dr. Basit Qureshi

JAVA	RMI
Differences:
• Objects (parameters or return data) passed by value
• Changes will visible only locally

• Remote objects are passed by reference
• Not by copying remote implementation
• The “reference” is not a pointer. It’s a data structure: { IP address, port, time,

object #, interface of remote object }
• RMI generates extra exceptions

48© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	
CALLS	(RPC):	
PYTHON	RPYC

RPC	IN	PYTHON
• Various implementations of RPC in Python:
• xmlRPC, PyRO, PyInvoke, RPyC, ZeroRPC

• General idea of implementing RPC on Python
1. Create a connection using an RPC object
2. Then invoke remote methods using that object

50© 2024 - Dr. Basit Qureshi

RPC	IN	PYTHON

Example using xmlrpc
1. Define the Server Method: Define the method that will be remotely
accessible on the server side.

51

def add(x, y):
return x + y

© 2024 - Dr. Basit Qureshi

RPC	IN	PYTHON
2. Expose the Method with XML-RPC: Use the SimpleXMLRPCServer class
from the xmlrpc.server module to create an XML-RPC server. Register the
method using the register_function method.

52

from xmlrpc.server import SimpleXMLRPCServer

server = SimpleXMLRPCServer(('localhost', 8000))
server.register_function(add, 'add')

© 2024 - Dr. Basit Qureshi

RPC	IN	PYTHON
3. Start the Server:

53

server.serve_forever()

© 2024 - Dr. Basit Qureshi

RPC	IN	PYTHON
4. Invoke the Remote Method: On the client side, use the xmlrpc.client
module to create an XML-RPC proxy object that connects to the server.
Then, call the remote method through this proxy object.

54

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy('http://localhost:8000/')
result = proxy.add(3, 5)
print(result) # Output: 8

© 2024 - Dr. Basit Qureshi

RPC	IN	PYTHON
Example: Server

55

from xmlrpc.server import SimpleXMLRPCServer

Define a function to be exposed remotely
def add(x, y):
 return x + y

Create an XML-RPC server
server = SimpleXMLRPCServer(('localhost', 8000))
server.register_function(add, 'add')

print("Server listening on port 8000...")
Start the server
server.serve_forever()

© 2024 - Dr. Basit Qureshi

RPC	IN	PYTHON
Example: Client

56

import xmlrpc.client

Create an XML-RPC proxy object
proxy = xmlrpc.client.ServerProxy('http://localhost:8000/')

Call the remote method through the proxy object
result = proxy.add(3, 5)
print("Result from server:", result)
Output: Result from server: 8

© 2024 - Dr. Basit Qureshi

RPC	IN	PYTHON
Example using Remote Python Call (RPyC) Library
• Define a Service MyService.
• Add remote method exposed_add to the service
• Start the server

57

import rpyc

Define a service class
class MyService(rpyc.Service):
 def exposed_add(self, x, y):
 return x + y

Start the RPyC server
if __name__ == "__main__":
 from rpyc.utils.server import ThreadedServer
 server = ThreadedServer(MyService, port=5000)
 print("Server started on port 5000...")
 server.start()© 2024 - Dr. Basit Qureshi

RPC	IN	PYTHON
• Connect to the server
• Call the add method on the root object, which is a proxy for the MyService

instance running on the server.

58

import rpyc

Connect to the RPyC server
conn = rpyc.connect("localhost", 5000)

Call the remote method
result = conn.root.add(3, 5)
print("Result from server:", result)
Output: Result from server: 8

© 2024 - Dr. Basit Qureshi

RPC	IN	PYTHON
• Transparent RPC interface
• No definition files, stub compilers, name servers, transport services

• Symmetric operation
• Both sides can invoke RPCs on each other; enables callback functions

• Server
• RPyC ThreadedServer started on the server program
• Binds to a default port (18812) or you specify the host's IP address and port

• Client
• Connects to the server
• Performs remote operations through the modules property, which exposes the

server module's namespace

59© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

REMOTE	PROCEDURE	
CALLS	(RPC):	
IN	A	NUTSHELL

RPC	IN	A	NUTSHELL
• Marshalling operations:
• Serialization and deserialization of data for transmission over the network.
• Addition of metadata such as function/method calls, object instances, and version

numbers.
• Common serialization formats include XML (for XML-RPC), JSON (for JSON-RPC),

and Protocol Buffers (for gRPC).

• Name service and discovery operations:
• Registration and lookup of binding information including ports, machines, and

protocols.
• Support for dynamic port assignment by the operating system.

61© 2024 - Dr. Basit Qureshi

RPC	IN	A	NUTSHELL
• Transport protocol support:
• Utilization of transport protocols like TCP, UDP, or HTTP/HTTPS (for XML-RPC).
• gRPC employs HTTP/2 over TCP for data transmission.

• Connection Management:
• Handling creation, maintenance, and termination of network connections.
• Addressing concerns such as connection pooling, retries, timeouts, etc.

62© 2024 - Dr. Basit Qureshi

RPC	IN	A	NUTSHELL
• Service definition and stub/skeleton generation:
• Explicit definition of service interfaces using interface definition languages.
• Automatic generation of stubs (client-side proxies) and skeletons (server-side

method implementations) from these definitions.

• Security operations:
• Authentication and authorization mechanisms for client-server authentication and

secure communication channels.
• Encryption techniques like TLS for data security.

63© 2024 - Dr. Basit Qureshi

RPC	IN	A	NUTSHELL
• Stub memory management and garbage collection:
• Memory allocation and deallocation for storing parameters and network buffers.
• Tracking object references and managing memory for object deletion.

• Error Handling:
• Robust error handling for application and network-level errors during remote calls.
• Support for exception propagation.

• Object and function ID operations:
• Support for passing references to remote functions or objects across processes

(not universally supported).

64© 2024 - Dr. Basit Qureshi

