
© 2024 - Dr. Basit

Qureshi

SYNCHRONIZATION

TOPICS

• The Leap second glitch!

• Clocks

• Clock Synchronization

• Ordering of messages in Dist. Systems

• Clock Algorithms

2© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit

Qureshi

THE LEAP SECOND
GLITCH

3© 2024 - Dr. Basit Qureshi

THE LEAP SECOND GLITCH

• 2012: Reddit outage

• 2012: Mozilla, LinkedIn, Yelp!, Amadeus
(airline booking) problems!

• 2017: Cloudflare (servers offline)

• Servers locked up! Non-responsive

• Some airlines processes stopped
(Cannot reserve seats, check-ins delays
for several hours)

• Chaos: Whats happening!

• Server reboots -> No help!

© 2024 - Dr. Basit Qureshi 4

THE LEAP SECOND GLITCH

• Culprit: System Clocks

• Why: Global clocks are sync’ed with Coordinated Universal Time (UTC)
• Leap seconds are added to account for the slight variations in the Earth's rotation

• Why: Atomic Time stays in sync with astronomical time

• Glitch happens when systems encounter difficulties adjusting to the extra second

• So: System Admins have to manually “add” time to the clocks

© 2024 - Dr. Basit Qureshi 5

WHY CLOCKS ARE IMPORTANT

Distributed systems need to measure time:

• Scheduling: Timeouts, Failure detectors, Retry counters

• Performance: Measurements, statistics, profiling

• Databases and Transactions: Record event occurrence time

• Data with Time to Live (TTL): Cache entries, replicas

• Order of events: Communication between nodes

Two types of clock:

• Physical clocks: count number of seconds elapsed

• Logical clocks: count events, e.g. messages sent

© 2024 - Dr. Basit Qureshi 6

WHY CLOCKS ARE IMPORTANT

Physical Clocks

• Measure time in seconds

• Analog clocks based on mechanical mechanism
(Pendulum)

• Digital clocks based on vibrating quartz crystal

• Quartz is a hard, crystalline mineral composed of silica
(silicon dioxide)

• Quartz crystals exhibit the piezoelectric effect, which
means they can generate an electric charge when
mechanical stress is applied to them

• Oscillator circuit measures resonance frequency when
electric voltage is applied to the crystal

• The current time is based on counting the oscillations of
the quartz crystal

© 2024 - Dr. Basit Qureshi 7

WHY CLOCKS ARE IMPORTANT

Quartz Clocks
• Cheap but not very accurate!

• One clock runs slightly fast, another
slightly slow

• Drift measured in parts per million
(ppm)

• 1 ppm = 1 microsecond/second = 86
ms/day = 32 s/year

• Temperature affects accuracy!

© 2024 - Dr. Basit Qureshi 8

WHY CLOCKS ARE IMPORTANT

Atomic Clocks
• Extraordinarily accurate!

• Uses the vibrations of atoms to measure time
(cesium-133, or rubidium-87)

• Caesium-133 has a resonance (“hyperfine
transition”) at ≈ 9 GHz

• 1 second = 9,192,631,770 periods of that signal

• Accuracy ≈ 1 in 10−14 (1 second in 3 million years)

© 2024 - Dr. Basit Qureshi 9

Price: 2,999 USD

WHY CLOCKS ARE IMPORTANT

GPS based time

• GPS Satellite based systems (Galileo, GLONASS)
• Operates with 24 satellites distributed in three orbital

planes.

• Each GLONASS satellite continuously broadcasts signals
[satellite’s current position and the current time]

• GPS navigation device or a smartphone with GNSS
capability, receives signals from multiple GLONASS satellites

• Receiver can calculate its own position on Earth through a
process called tri-lateration

• Combines results from 3 satellites for improved accuracy

• Problem: the speed of rotation of the planet is not
constant; it fluctuates due to the effects of tides,
earthquakes, glacier melting, and some unexplained
factors.

© 2024 - Dr. Basit Qureshi 10

WHY CLOCKS ARE IMPORTANT

Coordinated Universal Time (UTC)

• Based on atomic time BUT
• Needs periodic corrections due to variations in earths rotation.

• International Atomic Time (TAI): 1 day is 24 × 60 × 60 × 9,192,631,770
periods of caesium-133’s resonant frequency

• Problem: speed of Earth’s rotation is not constant Compromise: UTC is TAI
with corrections to account for Earth rotation

• Solution: Add a leap second

© 2024 - Dr. Basit Qureshi 11

WHY CLOCKS ARE IMPORTANT

Leap second

• Every Six months (June 30 and December 31)
• Skip One second (23:59:58 -> 00:00:00)

• Usual (23:59:59 -> 00:00:00)

• Add One second (23:59:59 -> 23:59:60)

• This is announced several months beforehand

© 2024 - Dr. Basit Qureshi 12

http://leapsecond.com/notes/leap-watch.htm

WHY CLOCKS ARE IMPORTANT

How Computers see time

• Unix time
• Number of seconds since 1 January 1970, 00:00:00 UTC (epoch). “Leap

seconds not added”

• ISO 8601
• YY:MM:DD:HH:MM:SS+Offset

• Eg. 2024-02-29T09:50:17+03:00

• Conversion
• Gregorian calendar: 365 days in a year, except leap years

 (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0))

© 2024 - Dr. Basit Qureshi 13

WHY CLOCKS ARE IMPORTANT

How Computers see time

• Java’s System.currentTimeMillis() is like Unix time, but uses
milliseconds rather than seconds
long T1 = System.currentTimeMillis();

DoSomeErrand();

long T2 = System.currentTimeMillis();

System.out.print(T2-T1);

• Was the leap second counted??
• Unix timestamps, and POSIX standard ignore leap seconds!

• Difference of a few seconds is not significant.

• However:
• Dist. Systems rely on time-stamps;

• A millisecond can cause errors

© 2024 - Dr. Basit Qureshi 14

WHY CLOCKS ARE IMPORTANT

Poor handling of the leap second on 30 June 2012 is what caused the
simultaneous failures of many services on that day.

Due to a bug in the Linux kernel, the leap second had a high
probability of triggering a livelock condition when running a

multithreaded process

Even a reboot did not fix the problem, but setting the system clock
reset the bad state in the kernel.

© 2024 - Dr. Basit Qureshi 15

Fix!

• Leap smearing: gradually distribute the adjustment over a longer period
of time rather than adding the extra second all at once.

CLOCK SYNCHRONIZATION

//so for Java programmers: The BAD
long T1 = System.currentTimeMillis();

DoSomeErrand(); // NTP Client may update time

long T2 = System.currentTimeMillis();

System.out.print(T2-T1);

//elapsed time may be negative!

//The GOOD
long T1 = System.nanoTime();

DoSomeErrand();

long T2 = System. nanoTime();

System.out.print(T2-T1);

//elapsed time is always >=0

© 2024 - Dr. Basit Qureshi 16

© 2024 - Dr. Basit

Qureshi

CLOCK
SYNCHRONIZATION

CLOCK SYNCHRONIZATION

• Simplest synchronization technique
• Send a Server, request to obtain the time

• Set the time to the returned value

© 2024 - Dr. Basit Qureshi 18

Problem: What about network latency??

CLOCK SYNCHRONIZATION

• Christians method
• Compensate for delays

• Note times:
• request sent: T0

• reply received: T1

• Assume network delays are symmetric

© 2024 - Dr. Basit Qureshi 19

CLOCK SYNCHRONIZATION

• Christians method

© 2024 - Dr. Basit Qureshi 20

What about errors and accuracy??

CLOCK SYNCHRONIZATION

• Christians method example:
• Client sent request at 5:08:15.100 (T0)

• Client receives response at 5:08:15.900 (T1)

• Response contains 5:09:25.300 (Tserver)

© 2024 - Dr. Basit Qureshi 21

Elapsed time is T1 -T0 = 5:08:15.900 - 5:08:15.100 = 800 ms

Best guess timestamp was generated: 800ms / 2 = 400 ms ago

Set time to Tserver+ elapsed time = 5:09:25.300 + 0.400 =
5:09:25.700

Note: 1000ms = 1 second

CLOCK SYNCHRONIZATION

• Christians method

© 2024 - Dr. Basit Qureshi 22

CLOCK SYNCHRONIZATION

• Berkeley Algorithm [Gusella & Zatti, 1989]
• Designed for intranets

• Assumes no machine has an accurate time source

• Obtains time from participating computers

• Synchronizes all clocks to a fault-tolerant average

• Select the largest set of time values that don’t differ from each other by
some quantity

• Avoids averaging values of malfunctioning clocks or clocks that drifted
too far

© 2024 - Dr. Basit Qureshi 23

CLOCK SYNCHRONIZATION

• Berkeley Algorithm [Gusella & Zatti, 1989]
• Example:

• 1. Request timestamps from all followers

© 2024 - Dr. Basit Qureshi 24

CLOCK SYNCHRONIZATION

• Berkeley Algorithm [Gusella & Zatti, 1989]
• Example:

• 2. Compute Fault-tolerant average:

© 2024 - Dr. Basit Qureshi 25

CLOCK SYNCHRONIZATION

• Berkeley Algorithm [Gusella & Zatti, 1989]
• Example:

• 3. Send off-set to each client

© 2024 - Dr. Basit Qureshi 26

CLOCK SYNCHRONIZATION

• Berkeley Algorithm [Gusella & Zatti, 1989]

Problems:
• The Berkeley Algorithm relies on a centralized time source [Single point of

failure]

• The algorithm assumes that the network delay between the time server
and all other nodes is symmetric [Not realistic]

• Does not explicitly account for clock drift, which refers to the tendency of
clocks to gain or lose time over time due to inaccuracies in their oscillators

• Scalability challenges in larger networks with a high number of nodes

© 2024 - Dr. Basit Qureshi 27

CLOCK SYNCHRONIZATION

• Computers track physical time/UTC with a quartz clock (with
battery, continues running when power is off)

• Due to clock drift, clock error gradually increases

• Clock skew: difference between two clocks at a point in time

• Solution: Periodically get the current time from a server that has a
more accurate time source (atomic clock or GPS receiver)
• Atomic clocks are too expensive

• Too bulky to build into every computer and phone

• Use quartz clocks BUT adjust for Clock drifts

• Use Network Time Protocol (NTP), Precision Time Protocol (PTP) for clock
re-adjustment

© 2024 - Dr. Basit Qureshi 28

CLOCK SYNCHRONIZATION

• Once the client has estimated the clock skew θ, it needs to apply
that correction to its clock.
• If |θ| < 125 ms, skew the clock: slightly speed it up or slow it down by up to

500 ppm (brings clocks in sync within ≈ 5 minutes)

• If 125 ms ≤ |θ| < 1,000 s, step the clock: suddenly reset client clock to
estimated server timestamp

• If |θ| ≥ 1,000 s, panic and do nothing (leave the problem for a human
operator to resolve)

Systems that rely on clock sync need to monitor clock skew!

© 2024 - Dr. Basit Qureshi 29

CLOCK SYNCHRONIZATION

• OS vendors run NTP Servers

• Mainstream OS have NTP clients built-in

• OS connects to NTP server for time correction

© 2024 - Dr. Basit Qureshi 30

NTP

CLOCK SYNCHRONIZATION

• Idea: NTP client contact multiple servers, discard outliers, average
results

• Problem: Network latency!

• Reduces clock skew to a few milliseconds in good network
conditions, but can be much worse!
• Latency is unpredictable!

• Geographical locale of server

• Servers with long queues: Slow response

© 2024 - Dr. Basit Qureshi 31

CLOCK SYNCHRONIZATION

© 2024 - Dr. Basit Qureshi 32

CLOCK SYNCHRONIZATION

© 2024 - Dr. Basit Qureshi 33

CLOCK SYNCHRONIZATION

© 2024 - Dr. Basit Qureshi 34

SNTP Example

CLOCK SYNCHRONIZATION

Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol

• Designed to synchronize clocks on a LAN to sub-microsecond precision
• Designed for LANs, not global: low jitter, low latency

• Timestamps ideally generated at the MAC or PHY layers to minimize delay and jitter

• Determine master clock (called the Grandmaster)
• Use a Best Master Clock algorithm to determine which clock is most precise

• The Grandmaster sends periodic synchronization messages to others (slave devices)

• Two phases in synchronization
• 1. Offset correction

• 2. Delay correction

© 2024 - Dr. Basit Qureshi 35

CLOCK SYNCHRONIZATION

Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol

• Chooses the Best Master Clock

• Distributed election based on properties of clocks

• Criteria from highest to lowest:
• Priority 1 (admin-defined hint)

• Clock class

• Clock accuracy

• Clock variance: estimate of stability based on past syncs

• Priority 2 (admin-defined hint #2)

• Unique ID (tie-breaker)

© 2024 - Dr. Basit Qureshi 36

CLOCK SYNCHRONIZATION

Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol

© 2024 - Dr. Basit Qureshi 37

CLOCK SYNCHRONIZATION

Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol

© 2024 - Dr. Basit Qureshi 38

CLOCK SYNCHRONIZATION

Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol

© 2024 - Dr. Basit Qureshi 39

CLOCK SYNCHRONIZATION

Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol

© 2024 - Dr. Basit Qureshi 40

CLOCK SYNCHRONIZATION

Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol

© 2024 - Dr. Basit Qureshi 41

Example

CLOCK SYNCHRONIZATION

NTP vs PTP

Range:

• NTP: nodes widely spread out on the Internet

• PTP: LAN -> Usually implemented at the physical layer to eliminate
OS & scheduling overhead

Accuracy

• NTP usually several milliseconds on WAN

• PTP usually sub-microsecond on LAN (around 1 µs)

• PTP can be 10,000x more precise than NTP!

© 2024 - Dr. Basit Qureshi 42

© 2024 - Dr. Basit

Qureshi

CAUSALITY: ORDERING
OF MESSAGES IN DIST.

SYS.

ORDERING OF MESSAGES

• Consider a scenario with 3 nodes A, B and C group communicating
• A makes a statement m1 and multi-casts it to B and C

• m1 is received at B immediately, C receives it late due to latency

• On receiving m1, B reacts by sending m2 and copies m2 to C.

• Now C receives m2 and then m1

• Real-life example:
• Database transactions

• State variables update etc.

© 2024 - Dr. Basit Qureshi 44

© 2024 - Dr. Basit Qureshi

45

User A User B User C

m1

m1

m1 = “User A says: Coffee is hot”

m2 = “User B says: No its cold!”

m2m2

• User C see m2 first and then m1, even though logically m1 happened before m2
• How can C determine the correct order in which it should put the messages?
• A monotonic clock won’t work since its timestamps are not comparable across nodes.
• Solution: Send timestamps

© 2024 - Dr. Basit Qureshi

46

User A User B User C

m1

m1

m1 = t1, “User A says: Coffee is hot”

m2 = t2, “User B says: No its cold!”

m2m2

• A sends m1 with timestamp t1 according to A’s clock.
• When B receives m1, the timestamp according to B’s clock is t2, where t2 < t1, because A’s clock

is slightly ahead of B’s clock.
• So, if we order messages based on their timestamps from time-of-day clocks, we might again

end up with the wrong order.

t1

t2

ORDERING OF MESSAGES

• To get “correct order”, define a happens-before rule:
• Event a happens before event b (written a → b) iff:

• a and b occurred at the same node,

• a occurred before b in the local node OR

• a is sending of a message m, b is receiving of the message m

• There exists a event c such that a → c and c → b

The happens-before relation is a partial order, i.e. it is possible that neither

a → b nor b → a.

In that case, a and b are concurrent (written a || b).

© 2024 - Dr. Basit Qureshi 47

© 2024 - Dr. Basit Qureshi

48

ORDERING OF MESSAGES

Causality:

• The happens-before relation is a way of reasoning about causality in
distributed systems.

• Causality considers whether information could have flowed from one
event to another, and thus whether one event may have influenced
another.

© 2024 - Dr. Basit Qureshi 49

In the previous example: message m1 “caused” the message m2

ORDERING OF MESSAGES

Causality:

Taken from physics (relativity).

When a → b, then a might have caused b.

When a || b, we know that a cannot have caused b.

50

Concept taken from Physics: it is not possible for information to travel faster than the speed of light

It is impossible for a signal sent from a to arrive at b’s location before event b, and vice versa.
Therefore, a and b must be causally unrelated

It is possible for a signal from a to reach c, and therefore a might influence c

In distributed systems, we usually work with messages on a network rather than beams of light, but
the principle is very similar.

© 2024 - Dr. Basit

Qureshi

CLOCK ALGORITHMS

CLOCK ALGORITHMS

• Distributed systems often broadcast messages (multi-cast)

• Several different broadcast protocols are used in practice, and their main
difference is the order in which they deliver messages.

• Important to understand how clocks are needed for synchronization

• Physical clock: count number of seconds elapsed

• Logical clock: count number of events occurred

• Physical timestamps: useful for many things, but may be inconsistent with
causality.

• Logical clocks: designed to capture causal dependencies.

(a -> b) => T(a) < T(b)

© 2024 - Dr. Basit Qureshi 52

CLOCK ALGORITHMS

Lamport clock algorithm

© 2024 - Dr. Basit Qureshi 53

CLOCK ALGORITHMS

Lamport clock algorithm

• Each node maintains a counter t, incremented on every local event e

• Let L(e) be the value of t after that increment

• Attach current t to messages sent over network

• Recipient moves its clock forward to timestamp in the message (if greater
than local counter), then increments

Properties of this scheme:

• If a → b then L(a) < L(b)

• However, L(a) < L(b) does not imply a → b

• Possible that L(a) = L(b) for (a != b)

© 2024 - Dr. Basit Qureshi 54

CLOCK ALGORITHMS

Lamport clock algorithm

• A Lamport timestamp is essentially an integer that counts the number of
events that have occurred.

• As such, it has no direct relationship to physical time.

• On each node, time increases because the integer is incremented on every
event.

• The algorithm assumes a crash-stop model (or a crash-recovery model if
the timestamp is maintained in stable storage, i.e. on disk).

© 2024 - Dr. Basit Qureshi 55

CLOCK ALGORITHMS

Lamport clock algorithm

• When a message is sent over the network, the sender attaches its current
Lamport timestamp to that message

© 2024 - Dr. Basit Qureshi 56

• t = 2 is attached to m1 and t = 4 is attached to m2.
• When the C receives a message, it moves its local Lamport clock forward to the timestamp in the

message plus one

CLOCK ALGORITHMS

Lamport clock algorithm

• Lamport timestamps have the property that if a happened before b, then b always has
a greater timestamp than a; in other words, the timestamps are consistent with
causality.

• It is also possible for two different events to have the same timestamp

• If we need a unique timestamp for every event, each timestamp can be extended with
the name or identifier of the node on which that event occurred.

© 2024 - Dr. Basit Qureshi 57

Given the Lamport timestamps of two events, it is in general not possible to tell whether those events are
concurrent or whether one happened before the other. If we do want to detect when events are concurrent, we
need a different type of logical time: a vector clock.

CLOCK ALGORITHMS

Lamport clock algorithm

• It is also possible for two different events to have the same timestamp

© 2024 - Dr. Basit Qureshi 58

CLOCK ALGORITHMS

Lamport clock algorithm

• If we need a unique timestamp for every event, each timestamp can be extended with
the name or identifier of the node on which that event occurred.

© 2024 - Dr. Basit Qureshi 59

CLOCK ALGORITHMS

Vector clock algorithm

• Lamport timestamps are just a single integer, vector timestamps are a list of integers,
one for each node in the system.
• Assume n nodes in the system, N = {N1, N2, . . . , Nn}

• Vector timestamp of event a is V (a) = {t1, t2, . . . , tn}

• ti is number of events observed by node Ni

• Each node has a current vector timestamp T

• On event at node Ni, increment vector element T[i]

• Attach current vector timestamp to each message

• Recipient merges message vector into its local vector

© 2024 - Dr. Basit Qureshi 60

Apart from the difference between a scalar and a vector, the vector clock algorithm is very similar to a Lamport clock

CLOCK ALGORITHMS

Vector clock algorithm

© 2024 - Dr. Basit Qureshi 61

CLOCK ALGORITHMS

Vector clock algorithm

• A node initializes its vector clock to contain a zero for each node in the
system.

• Whenever an event occurs at node Ni , it increments the ith entry (its own
entry) in its vector clock.

• When a message is sent over the network, the sender’s current vector
timestamp is attached to the message.

• Finally, when a message is received, the recipient merges the vector
timestamp in the message with its local timestamp by taking the element-
wise maximum of the two vectors, and then the recipient increments its
own entry.

© 2024 - Dr. Basit Qureshi 62

CLOCK ALGORITHMS

Vector clock algorithm

Assuming the vector of nodes is N = {A, B, C}

The vector timestamp of an event e represents a set of events, e and its
causal dependencies

© 2024 - Dr. Basit Qureshi 63

For example, (2, 2, 0) represents the first two events from A, the first two events from B, and no events from C

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 64

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 65

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 66

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 67

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 68

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 69

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 70

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 71

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 72

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 73

CLOCK ALGORITHMS

Vector clock algorithm

Example

© 2024 - Dr. Basit Qureshi 74

SUMMARY

• Vector clocks give us a way of identifying which events are causally related
• We are guaranteed to get the sequencing correct

• Problems: Vector size + Larger vector need more comparison time (Space & Time)

• Causality
• If a -> b then event a can affect event b

• Concurrency
• If neither a -> b nor b -> a then one event cannot affect the other

• Partial Ordering
• Causal events are sequenced

• Total Ordering
• All events are sequenced

© 2024 - Dr. Basit Qureshi 75

	Slide 1: synchronization
	Slide 2: topics
	Slide 3: The leap second glitch
	Slide 4: The leap second glitch
	Slide 5: The leap second glitch
	Slide 6: Why Clocks are important
	Slide 7: Why Clocks are important
	Slide 8: Why Clocks are important
	Slide 9: Why Clocks are important
	Slide 10: Why Clocks are important
	Slide 11: Why Clocks are important
	Slide 12: Why Clocks are important
	Slide 13: Why Clocks are important
	Slide 14: Why Clocks are important
	Slide 15: Why Clocks are important
	Slide 16: clock synchronization
	Slide 17: Clock synchronization
	Slide 18: clock synchronization
	Slide 19: clock synchronization
	Slide 20: clock synchronization
	Slide 21: clock synchronization
	Slide 22: clock synchronization
	Slide 23: clock synchronization
	Slide 24: clock synchronization
	Slide 25: clock synchronization
	Slide 26: clock synchronization
	Slide 27: clock synchronization
	Slide 28: clock synchronization
	Slide 29: clock synchronization
	Slide 30: clock synchronization
	Slide 31: clock synchronization
	Slide 32: clock synchronization
	Slide 33: clock synchronization
	Slide 34: clock synchronization
	Slide 35: clock synchronization
	Slide 36: clock synchronization
	Slide 37: clock synchronization
	Slide 38: clock synchronization
	Slide 39: clock synchronization
	Slide 40: clock synchronization
	Slide 41: clock synchronization
	Slide 42: clock synchronization
	Slide 43: Causality: Ordering of messages in dist. Sys.
	Slide 44: Ordering of messages
	Slide 45
	Slide 46
	Slide 47: Ordering of messages
	Slide 48
	Slide 49: Ordering of messages
	Slide 50: Ordering of messages
	Slide 51: Clock algorithms
	Slide 52: Clock algorithms
	Slide 53: Clock algorithms
	Slide 54: Clock algorithms
	Slide 55: Clock algorithms
	Slide 56: Clock algorithms
	Slide 57: Clock algorithms
	Slide 58: Clock algorithms
	Slide 59: Clock algorithms
	Slide 60: Clock algorithms
	Slide 61: Clock algorithms
	Slide 62: Clock algorithms
	Slide 63: Clock algorithms
	Slide 64: Clock algorithms
	Slide 65: Clock algorithms
	Slide 66: Clock algorithms
	Slide 67: Clock algorithms
	Slide 68: Clock algorithms
	Slide 69: Clock algorithms
	Slide 70: Clock algorithms
	Slide 71: Clock algorithms
	Slide 72: Clock algorithms
	Slide 73: Clock algorithms
	Slide 74: Clock algorithms
	Slide 75: summary

