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CS330 OPERATING SYSTEMS (RECAP)

• Mutual Exclusion?
• TO prevent multiple processes from accessing a shared resource or critical section at the same time.

• Mutual Exclusion – Only one process in critical section.
• Progress – If no one is in the critical section, some process should be allowed in.
• Bounded Waiting – A process should not wait forever to enter the critical section.

• Examples:
• Dining Philosopher problem (Deadlocks, starvation, locks etc) 

• Solutions?
• Semaphores, Mutex locks, Monitors
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DIST MUTUAL EXCLUSION

“A distributed system ensures that only one process or node can access a 
shared resource or critical section at any given time”.

• Examples:
• Modify a shared file

• Update a database field

• Modify replication messages

• Easy to handle for atomic requests [Covered in CS330]
• One message, one server

• One system: Hardware compatibility, Semaphores, Messages, Condition variables

• Challenging if
• Multiple messages on multiple servers with different hardware capabilities

• Need synchronization and coordination
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DIST MUTUAL EXCLUSION

GOAL:

• Distributed Mutual Exclusion ensures that only one process is granted permission to 
access the resource at a time, while others are blocked or delayed until the resource 
becomes available.

AIM:

• Safety: Ensuring that only one process accesses the Critical Section at a time

• Liveness: Ensuring that processes eventually gain access to the critical section, even 
in the presence of failures, delays, or network partitions.

• Efficiency: [Optional] Minimizing overhead and maximizing resource utilization 
while maintaining safety and liveness properties.

APPLICATION (Few Examples): Shared printers, ATM machines, Shared DB tables, Shared files etc.
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DIST MUTUAL EXCLUSION

HOW Dist Mutual Exclusion Differs from a Single Processor Mut. Exl.:

NEEDS:
• Process identification: Every process has a unique Identifier (e.g., address.process_id) 

• Reliable communication: Network messages are reliable 

• Live processes: Ensure system processes are responsive & do not die.

• Resource identification: All Agree on resource identification 

HOW:
• Pass the identifier with each request 

• e.g., lock("printer"), lock("table:employees"), 
lock("table:employees;row:15"), lock("shared_file.txt") 

• We’ll just use request(R) to request exclusive access to resource R 
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DIST MUTUAL EXCLUSION

• Algorithms
• Centralized: A coordinator is responsible for allowing access to a shared resource

• Token-based: Access if a token was granted

• Contention-based (Quorum): Via Distributed agreement
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DIST MUTUAL EXCLUSION

• Centralized Algorithms: Similar to a single processor system:
• Process P Request(R) access to resource R from Coordinator C

• Wait for response

• Receive Access

• Access resource

• Release(R)
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DIST MUTUAL EXCLUSION

• Centralized Algorithms: If another Process tries to access:
• Maintain a FIFO queue at coordinator

• Coordinator: Donot reply until resource available
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DIST MUTUAL EXCLUSION
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DIST MUTUAL EXCLUSION

• Centralized Algorithms: 

• The Good
• Easy to implement

• FIFO Queue takes order into consideration 

• Processes do not need to communicate to other processes; just the coordinator

• Efficient: 2 message to enter, 1 message to exit

• The Bad
• Single point of failure: Coordinator crashes!

• A crashed coordinator blocks access to resource

• Coordinator can become a bottleneck!
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DIST MUTUAL EXCLUSION

• De-Centralized Algorithms: Token-Ring Algorithm 

• Processes known each other in a group
• Processes can be assigned a unique process IDs

• Construct logical ring in software 

• Process communicates with its neighbor and not with the coordinator
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DIST MUTUAL EXCLUSION

• De-Centralized Algorithms: Token-Ring Algorithm 

• Initialization 
• Process 0 creates a token for resource R 

• Token circulates around ring from Pi to P(i+1)mod N 
• When process acquires token 

• Checks to see if it needs the resource (the lock) 

• No: send the token to its neighbor 

• Yes: access resource & hold token until done
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DIST MUTUAL EXCLUSION

• De-Centralized Algorithms: Token-Ring Algorithm 
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DIST MUTUAL EXCLUSION

• De-Centralized Algorithms: Token-Ring Algorithm 

• The Good
• Saftey: Only One process at a time [Mutual Exclusion is guaranteed]

• Liveness: Order is defined, but not always First-Come-First-Serve (FCFS)

• Delay: Request = 0…N-1 messages; Release = 1 message

• The Bad
• Constant activity

• Process dies: Token is lost! Needs to be re-generated

• Detecting loss can be challenging (really lost or someone is holding it)

• Communication error: What if no communication with neighbor
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LAMPORT MUTUAL EXCLUSION

• Uses Lamport's logical clocks and message passing to coordinate access to 
a shared resource among multiple processes.

• Messages are sent reliably and in single-source FIFO order 
• Each message is time stamped with totally ordered (i.e., unique) Lamport 

timestamps 

• Ensures that each timestamp is unique 

• Every node can make the same decision by comparing timestamps

• Each process maintains a request queue 
• Queue contains mutual exclusion requests 

• Queues are sorted by message timestamps
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LAMPORT MUTUAL EXCLUSION

Step 1: Request a resource R: 

• Process Pi sends Request(R, i, Ti) to ALL nodes

• It also places the same request onto its own queue 

• When a process Pj receives a request: 

• Places the request on its request queue 

• It returns a timestamped Reply(Tj) 

• Every process will have an identical queue 
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LAMPORT MUTUAL EXCLUSION

Step 2: Use the resource R: 

• Pi can access the resource if 

• Pi has received Reply messages from every process 
Pj where Tj > Ti 

• Pi  request has the earliest timestamp in its queue
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i.e. If your request is at the head of the queue AND you received Replies for that request 
… then you can access the critical section



LAMPORT MUTUAL EXCLUSION

Step 3: Release the resource R: 

• Process Pi removes its request from its queue 

• Sends Release(Ti) to all nodes 

• Each process now checks if its request is the earliest in 
its queue 

• If so, that process now has the lock on the resource
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LAMPORT MUTUAL EXCLUSION

Assessment

• Safety: Replicated queues – same process on top

• Liveness: Sorted queue & Lamport timestamps ensure First come first serve

• Delay/Bandwidth: 

• Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs

• Release = (N-1) Release msgs 

• Problems 

• N points of failure 

• A lot of messaging traffic: Requests & releases are sent to the entire group
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RICART & AGARWALA MUTUAL EXCLUSION

Designed to reduce message overhead compared to Lamport's algorithm

Basic Idea:

• Allow processes to grant permission to enter the critical section directly

• No need to consult a central authority
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RICART & AGARWALA MUTUAL EXCLUSION

When a process wants to enter critical section: 

1. Compose a Request(R, i, Ti) message containing: 

• R: Name of resource 

• i: Process Identifier(machine ID, process ID) 

• Ti: Timestamp (totally-ordered Lamport) 

2. Reliably multicast request to all processes in group 

3. Wait until everyone gives permission (sends a Reply) 

4. Enter critical section / use resource
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RICART & AGARWALA MUTUAL EXCLUSION

When process receives a request: 

• If receiver not interested: send Reply to sender 

• If receiver is using the resource: do not reply; add request to queue 

• If receiver just sent a request as well: (potential race condition) 
• Compare timestamps on received & sent messages: earliest timestamp wins 

• If receiver is the loser: send Reply 

• If receiver is the winner: do not Reply 

• Queue the request 

• When done with resource: send Reply to all queued requests
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RICART & AGARWALA MUTUAL EXCLUSION

Assessment

• Safety: Two competing processes will not send a Reply to each other 

• Timestamps in the requests are unique 

• one will be earlier than the other 

• Liveness: Lamport timestamps ensure First come first serve

• Delay/Bandwidth: 

• Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs

• Release = 0…(N-1) Reply msgs to queued requests

• Problems 

• N points of failure 

• A lot of messaging traffic: Requests & releases are sent to the entire group
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LAMPORT VS RICART & AGARWALA MUTUAL EXCLUSION

Lamport

• Everyone replies … always – no hold-back 
• 3(N-1) messages Request → Reply → Release 

• Always compares Timestamps: Process is granted the resource if its request is 
the earliest in its queue

Ricart & Agarwala

• Reply only if you are in the critical section (or won a tie) 

• Don’t respond with a Reply until you are done with the critical section 
• 2(N-1) messages 

• Request → ACK 

• Process is granted the resource if it gets ACKs from everyone
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COMPARISON

Lamport

• Traffic: 3(N-1) messages per Critical 
Section entry

• Timestamps: Always

• Total ordering: Uses a centralized 
timestamp mechanism that requires all 
messages to be delivered and processed 
for accurate ordering

• Less fault tolerant: failure in message 
delivery could cause issues with 
synchronization

• Application: Better for applications 
requiring strict global ordering

• Ensures fairness because requests are 
processed in the order of timestamps

Ricart & Agarwala

• 2(N - 1) messages per critical section entry.

• Only use time stamps to resolve race condition

• Is fully decentralized, with no single point of 
failure. However, it still requires all processes to 
respond to each other, meaning that if a node 
fails, it can block access to the critical section.

• Fault tolerance can be an issue if there is no 
handling of non-responsive nodes

• Offers more relaxed synchronization, benefiting 
applications with simpler access needs

• Fairness is more conditional on all processes 
responding in a timely manner. Delays can 
cause issues

© 2024 - Dr. Basit Qureshi
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LAMPORT VS RICART & AGARWALA MUTUAL EXCLUSION

Other algorithms

• Suzuki-Kasami
• Token-based mutual exclusion algorithm
• + Efficient in systems with low contention
• - High message overhead in high-contention situations

• Maekawa
• Groups nodes in Quorums ( a subset of nodes).
• + Reduces message complexity by limiting the number of nodes 
• - Can cause deadlocks on quorum (subset of nodes).

• Dijkstra's Token Ring Algorithm
• Only the process holding the token is allowed to enter the critical section
• + Each process gets a fair turn with minimal communication 
• - High latency in large systems, as the token must travel through each node

• Raynal's Algorithm
• Similar to Lamport but requires acknowledgements
• +Reliable and ensures that requests are handled in a well-defined order
• -Message overhead is relatively high increasing latency 

© 2024 - Dr. Basit Qureshi 31



© 2024 - Dr. Basit 

Qureshi

CONTENTION- BASED 
(QUORUM) /

 LEADER ELECTION 
ALGORITHMS



BULLY ALGORITHM

• Bully Algorithm

• GOAL: Select the process with the largest ID as a leader

• Holding an election: when process Pi detects a dead leader: 
• Send election message to all processes with higher IDs 

• If nobody responds, Pi wins and takes over 

• If any process responds, P’s job is done 
• Optional: Let all nodes with lower IDs know an election is taking place

• If a process receives an election message 
• Send an OK message back 

• Hold an election (unless it is already holding one)
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BULLY ALGORITHM
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BULLY ALGORITHM

© 2024 - Dr. Basit Qureshi 35



BULLY ALGORITHM
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BULLY ALGORITHM
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BULLY ALGORITHM
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RING ELECTION ALGORITHM

Ring Election Algorithm

• GOAL: Select the process with the largest ID as a leader

• Initiate the election by sending an "election" message to its neighbor with the next highest priority.

• Upon receiving an election message, compare the priority value in the message with its own. 
• If priority is higher than its own, it forwards the message to its neighbor. 

• If priority is lower or equal, it discards the message.

• The election message continues around the ring until it reaches the highest priority process. 

• The new leader broadcasts a "leader" message to inform all other processes of its election.
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RING ELECTION ALGORITHM

Ring Election Algorithm
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RING ELECTION ALGORITHM

Ring Election Algorithm
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RING ELECTION ALGORITHM

Ring Election Algorithm
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RING ELECTION ALGORITHM

Ring Election Algorithm
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RING ELECTION ALGORITHM

Ring Election Algorithm
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RING ELECTION ALGORITHM

Ring Election Algorithm
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RING ELECTION ALGORITHM

Ring Election Algorithm
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RING ELECTION ALGORITHM

Ring Election Algorithm
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COMPARISON
Bully

Pros:

• Fast in small systems – Elects a leader quickly if 
the initiator has the highest ID.

• Guaranteed to elect the highest-ID process as 
the leader.

• Works even if multiple processes initiate 
election at the same time.

Cons:

• High message overhead in large systems – 
Worst case: O(n2) messages.

• Single point of restart – Only works if higher-ID 
processes respond correctly.

• More sensitive to crashes during election.

• Assumes synchronous communication for 
timeout detection.

Ring Election

Pros:

• Lower message complexity – Around O(n) 
messages.

• Simple and easy to implement in a ring-
structured system.

• Works well in synchronous and asynchronous 
systems.

• No need for global knowledge (like all process 
IDs).

Cons:

• Slower in large rings, since messages travel 
one-by-one around the ring.

• Vulnerable to ring breakage (e.g., if a process 
in the ring fails and breaks the path).

• Doesn't always elect the highest-ID process 
unless designed to do so.

© 2024 - Dr. Basit Qureshi
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ELECTIONS & NETWORK PARTITIONS

• Network partitions (segmentation) 
• Multiple nodes may decide they’re the leader 

• Multiple groups, each with a leader & diverging data among them → split brain
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• Insist on a majority → if no majority, the system will not function. 
• Quorum = minimum # of participants required for a system to function.



CONSENSUS

Why consensus is needed?

• Single Client
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We rely on a quorum (majority) for reads & writes 
If we have to write to a majority of servers for the write to succeed and 
we have to read from a majority of servers for the read to succeed then 
we can be certain that at least one server has the latest version of data. 

No quorum = failed read!



CONSENSUS

Why consensus is needed?

• Multiple clients
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We risk inconsistent updates



CONSENSUS

Why consensus is needed?

• Multiple clients -> use Coordinator?
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Coordinator (or sequence # generator) processes requests one at a time 
But now we have a single point of failure!



CONSENSUS

Why consensus is needed?

• Mutual Exclusion
• Choose which process can access a resource from all who want it 

• Agree on who gets a resource or who becomes a coordinator

• Election algorithms 
• Choose one process from the set of willing processes

• Uses:
• Dist Databases: Google Spanner, Amazon DynamoDB, CockroachDB, TiDB.

• Blockchain Technology: enable nodes to agree on the validity and ordering of transactions.

• Cryptocurrencies: Bitcoin, Ethereum etc, rely on consensus algorithms to validate and confirm 
transactions, preventing double-spending and ensuring the integrity of the currency.

• Internet of Things (IoT): reach agreement on the state of sensor data

• Dist File Systems: Google File System (GFS), Amazon S3  and Hadoop File System

• Container orchestration: Kubernetes, Docker swarm.

© 2024 - Dr. Basit Qureshi 54



CONSENSUS

Why consensus is needed?

• Without consensus
• Processors may fail (some may need stable storage) 

• Messages may be lost, out of order, or duplicated 

• If delivered, messages are not corrupted
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CONSENSUS

Consensus GOAL

• AGREE on one result among a group of participants

Consensus Requirements

• Validity: Only proposed values may be selected (you can't make stuff up)

• Uniform agreement: No two nodes may select different values ( you agree with 
everyone else)

• Integrity: A node can select only a single value (you cannot change your mind)

• Termination: Every node will eventually decide on a value (you come to a 
decision)
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CONSENSUS

The Fischer Lynch Patterson (FLP) Impossibility

Consensus protocols with asynchronous communication & faulty 
processes, “Every protocol for this problem has the possibility of 

nontermination, even with only one faulty process”

• Impossibility of distributed consensus with one faulty process by Fischer, 
Lynch and Patterson

What does it mean?
• We cannot achieve consensus in bounded time, but we can, with partially 

synchronous networks 

• Partially synchronous = network with a bounded time for message delivery but 
we don't know ahead of time what that bound is 

• We can either wait long enough for messaging traffic so the protocol can complete 
or else terminate
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CONSENSUS

Common Consensus Algorithms

• Guarantee a leaders term

• In a partially synchronous system, a timeout-based failure detector may be inaccurate: 
it may suspect a node has, having crashed, when in fact the node is functioning fine, for 
example due to a spike in network latency
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Now we have two leaders !??



CONSENSUS

Common Consensus Algorithms

• Solution?

• Even after a node has been elected leader, it must act carefully
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CONSENSUS

• In decentralized systems, with no central authority, achieving consensus is 
crucial for ensuring the integrity and consistency of the shared data

1. If a node hasn’t received a message for some time, assume it is DEAD

2. When nodes suspect the current leader has failed: HOLD ELECTION

3. One or more nodes becomes a CANDIDATE 

4. Other nodes VOTE on whether they accept the candidate as their new leader. 

5. Election, the new LEADER:

• If a quorum of nodes vote in favor of the candidate, it becomes the new leader. 

• If a majority quorum is used, this vote can succeed as long as a majority of 
nodes (2 out of 3, or 3 out of 5, etc.) are working and able to communicate.

• Challenge: How do we get unanimous agreement on a given value?
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CONSENSUS

Common Consensus Algorithms

• Paxos: Lamport [ACM Transactions on Computer Systems - 1998]

• Multi-Paxos: Lamport [2000]

• Fast-Paxos: Lamport [2005]

• Raft: Diego Ongaro and John Ousterhout [USENIX Annual Technical Conference 
(ATC) 2014]

• Use
• Google: Google’s Chubby lock service, which manages distributed locks and data, is built on Paxos.
• Amazon Web Services (AWS): AWS uses Paxos within DynamoDB for distributed consensus and 

coordination of replica data storage.
• Microsoft: Paxos is integral to Microsoft’s Cosmos DB.

• Yahoo!: Zookeeper, now a Apache project. 
• Docker: Docker’s Swarm mode uses Raft to manage the state and roles of nodes in a Docker cluster
• Kubernetes: The Etcd data store uses Raft to maintain cluster state, including pod configurations, 

namespaces, and other metadata. 
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CONSENSUS

Common Consensus Algorithms

• Multi-Paxos, Raft, etc. use a leader to sequence messages. 
• Use a failure detector (timeout) to determine suspected crash or unavailability of 

leader. 

• On suspected leader crash, elect a new one. 

• Prevent two leaders at the same time (“split-brain”)

• Ensure ≤ 1 leader per term:
• Term is incremented every time a leader election is started 

• A node can only vote once per term 

• Require a quorum of nodes to elect a leader in a term
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CONSENSUS

Common Consensus Algorithms

• Paxos by Lamport (1989)
• Robust but complex to understand

• Multi-Paxos by Lamport (2001)
• Extended to work with multiple instances

• Fast-Paxos by Lamport (2005)
• An optimization of the original Paxos algorithm, aimed at reducing latency and 

improving efficiency

• Raft (2014)
• Specifically designed with understandability and ease of implementation in mind

• Paxos vs Raft (2020)
• Heidi Howard and Richard Mortier
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Heidi Howard, Richard Mortier, "Paxos vs Raft: have we reached consensus on distributed consensus?"  
Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data, April 2020. 
https://doi.org/10.1145/3380787.3393681

https://doi.org/10.1145/3380787.3393681
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1. Leader election

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes

4. Neutralizing old leaders

5. Client interactions

6. Reconfiguration

65

Raft Overview



• At any given time, each server is either:

– Leader: handles all client interactions, log replication

– Follower: completely passive

– Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers
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Server States

Follower Candidate Leader
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Liveness Validation

Follower Candidate Leader

start
timeout,

start election
receive votes from
majority of servers

timeout,
new election

discover server with
 higher termdiscover current leader

or higher term

“step
down”

• Servers start as followers

• Leaders send heartbeats (empty AppendEntries RPCs) to 

maintain authority

• If electionTimeout elapses with no RPCs (100-500ms), 

follower assumes leader has crashed and starts new election 

(RequestVotes RPC)
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Terms (aka epochs)

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

• Time divided into terms

– Election (either failed or resulted in 1 leader)

– Normal operation under a single leader

• Each server maintains current term value

• Key role of terms: identify obsolete information
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Elections

• Start election:

– Increment current term, change to candidate state, vote for self

• Send RequestVote to all other servers, retry until either:

1. Receive votes from majority of servers:

• Become leader

• Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:

• Return to follower state

3. No-one wins election (election timeout elapses):

• Increment term, start new election
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Elections

Servers

Voted for 

candidate A

B can’t also 

get majority

• Safety:  allow at most one winner per term

– Each server votes only once per term (persists on disk)

– Two different candidates can’t get majorities in same term

• Liveness: some candidate must eventually win

– Each choose election timeouts randomly in [T, 2T]

– One usually initiates and wins election before others start

– Works well if T >> network RTT 
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Log Structure
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• Log entry = < index, term, command >

• Log stored on stable storage (disk); survives crashes

• Entry committed if known to be stored on majority of servers

– Durable / stable, will eventually be executed by state machines
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Normal operation

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

shl

• Client sends command to leader

• Leader appends command to its log

• Leader sends AppendEntries RPCs to followers

• Once new entry committed:

– Leader passes command to its state machine, sends result to client

– Leader piggybacks commitment to followers in later AppendEntries

– Followers pass committed commands to their state machines



• Crashed / slow followers?
– Leader retries RPCs until they succeed

• Performance is optimal in common case:
– One successful RPC to any majority of servers
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Normal operation
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Log Operation:  Highly Coherent
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• If log entries on different server have same index and term:

– Store the same command

– Logs are identical in all preceding entries

• If given entry is committed, all preceding also committed



• AppendEntries has <index,term> of entry preceding new ones

• Follower must contain matching entry; otherwise it rejects

• Implements an induction step, ensures coherency
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Log Operation:  Consistency Check
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mismatch



• New leader’s log is truth, no special steps, start normal operation

– Will eventually make follower’s logs identical to leader’s

– Old leader may have left entries partially replicated

• Multiple crashes can leave many extraneous log entries
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Leader Changes

1 2 3 4 5 6 7log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5



• Raft safety property:  If leader has decided log entry is 
committed, entry will be present in logs of all future leaders

• Why does this guarantee higher-level goal?

1. Leaders never overwrite entries in their logs

2. Only entries in leader’s log can be committed

3. Entries must be committed before applying to state machine
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Safety Requirement

Committed → Present in future leaders’ logs

Restrictions on

commitment

Restrictions on

leader election

Once log entry applied to a state machine, no other state 

machine must apply a different value for that log entry
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Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2
Unavailable during 
leader transition

Committed?
Can’t tell 

which entries 

committed!

s1

s2

• Elect candidate most likely to contain all committed entries

– In RequestVote, candidates incl. index + term of last log entry

– Voter V denies vote if its log is “more complete”:              

(newer term) or (entry in higher index of same term)

– Leader will have “most complete” log among electing majority
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Committing Entry from Current Term

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2
Can’t be elected as
leader for term 3

AppendEntries just succeeded

Leader for term 2

• Case #1: Leader decides entry in current term is committed

• Safe: leader for term 3 must contain entry 4
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Committing Entry from Earlier Term

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

AppendEntries just succeeded

Leader for term 4

3

• Case #2: Leader trying to finish committing entry from earlier

• Entry 3 not safely committed:

– s5 can be elected as leader for term 5 (how?)

– If elected, it will overwrite entry 3 on s1, s2, and s3



81

New Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

4

4

3

Leader for term 4

• For leader to decide entry is committed:

1. Entry stored on a majority 

2. ≥ 1 new entry from leader’s term also on majority 

• Example;   Once e4 committed, s5 cannot be elected leader 

for term 5, and e3 and e4 both safe



Leader changes can result in log inconsistencies

82

Challenge:  Log Inconsistencies

1 41 1 4 5 5 6 6 6Leader for term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

Possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Missing

Entries

Extraneous

Entries

1 2 3 4 5 6 7 8 9 10 11 12



Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7

1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1

Followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• New leader must make follower logs consistent with its own

– Delete extraneous entries

– Fill in missing entries

• Leader keeps nextIndex for each follower:

– Index of next log entry to send to that follower

– Initialized to (1 + leader’s last index)

• If AppendEntries consistency check fails, decrement nextIndex, try again



Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7

1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1Before repair 2 2 33 3 3 32

(a)

(f)

1 1 1 4(f)

nextIndex

After repair
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Neutralizing Old Leaders

Leader temporarily disconnected  

→ other servers elect new leader

→ old leader reconnected

→ old leader attempts to commit log entries

• Terms used to detect stale leaders (and candidates)

– Every RPC contains term of sender

– Sender’s term < receiver:

• Receiver: Rejects RPC (via ACK which sender processes…)

– Receiver’s term < sender:

• Receiver reverts to follower, updates term, processes RPC

• Election updates terms of majority of servers

– Deposed server cannot commit new log entries
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Client Protocol

• Send commands to leader

– If leader unknown, contact any server, which redirects client to leader

• Leader only responds after command logged, 

committed, and executed by leader 

• If request times out (e.g., leader crashes):

– Client reissues command to new leader (after possible redirect)

• Ensure exactly-once semantics even with leader failures

– E.g., Leader can execute command then crash before responding

– Client should embed unique ID in each command

– This client ID included in log entry

– Before accepting request, leader checks log for entry with same id



RAFT

• An excellent visual representation of RAFT

• https://thesecretlivesofdata.com/raft/
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