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Distributed Systems

Introduction 
Chapter 1
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Course/Slides Credits

Note: all course presentations are based on those 
developed by Andrew S. Tanenbaum and 
Maarten van Steen. They accompany their 
"Distributed Systems: Principles and 
Paradigms" textbook (1st & 2nd editions).
http://www.prenhall.com/divisions/esm/app/aut
hor_tanenbaum/custom/dist_sys_1e/index.html

And additions made by Paul Barry in course 
CW046-4: Distributed Systems 
http://glasnost.itcarlow.ie/~barryp/net4.html 

http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/dist_sys_1e/index.html
http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/dist_sys_1e/index.html
http://glasnost.itcarlow.ie/~barryp/net4.html
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Outline
vWhat is a distributed system?
vDesign Goals
vPitfalls when Developing Distributed Systems
vTypes of Distributed Systems
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Definition of a Distributed System (1)

A distributed system is:
A distributed system is a collection of autonomous computing

elements that appears to its users as a single coherent system.

Characteristic 1: Collection of autonomous computing elements 
• Autonomuous computing nodes
• Independent behavior: No global time- Need of synchronization
• Group membership issues.

Characteristic 2: Single coherent system 
• User or application perceive a single system -->Nodes need to collaborate
• The collection of nodes as a whole operates the same, no matter where, when, and
how interaction between a user and the system takes place.
• End user would not be able to tell exactly on which computer a process is 
Currently  executing / part of a task has been spawned off to another process /
where data is stored or replicated should be of no concern
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Definition of a Distributed System (2)

• A distributed system organized as middleware. 
• The middleware layer extends over multiple machines,  and offers each application 
the same interface. It hides the differences in hardware and OSs.
• Contains commonly used components or functions that need not to be implemented 
by each applications.
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Definition of a Distributed System (2)
• Middleware = OS of distributed System

– Manager of resources offering its applications to
efficiently share and deploy those resources across a
network.

– Facilities for inter-application communication.
– Security services.
– Accounting services.
– Masking of and recovery from failures.

• Difference with OS is that their services are
offered in a networked environment.
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Goals of Distributed Systems

• Easily Connect Users/Resources and support 
resource sharing.

• Exhibit Distribution Transparency
• Support Openness
• Be Scalable:

– in size
– geographically
– administratively

Looking at these goals helps use answer the question: “Is 
building a distributed system worth the effort?”
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Connect Users/Resources and 
support resource sharing.

• Resources : storage, services, data…
– Example: file sharing peer-to-peer; Bittorrent

• Cheaper to have a single reliable storage facility
• Connecting makes collaboration easy.
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Transparency in a Distributed System

Different forms of transparency in a distributed system (ISO, 1995)

Hide the fact that processes and resources are physically 
distributed across different computers.
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Openess

Able to interact with services from other open
systems,  irrespective of the underlying environment:

• Well defined interface.
• Easily interoperate – coexist with others
• Support portability
• Easily extensible – Add functionality/component
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Scalability in Distributed Systems
• Size scalability: Number of users/processes
• Geographical scalability: Maximum distance 

between nodes
• Administrative scalability: Number of 

administrative domains
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Scalability Limitations

Examples of scalability limitations

Concept Example

Centralized services A single server for all users

Centralized data A single on-line telephone book

Centralized algorithms Doing routing based on complete information
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Scaling Techniques (1)

Scaling is limited by the servers and network capacity.

Solutions:
Scaling up: Increase the capacities (CPU, memory, network 

modules..)

Scaling out: expanding the DS by deploying more machines.
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Scaling Techniques (1)

1.4

The difference between letting (a) a server 
or (b) a client check forms as they are being filled

Moving computation to client.
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Scaling Techniques (2)

1.5

An example of dividing the DNS name space into zones

Partition data and computation across multiple machine
Replication and caching (problems of inconsistency)
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Characteristics of decentralized algorithms:

• No machine has complete information 
about the system state.

• Machines make decisions based only 
on local information.

• Failure of one machine does not ruin 
the algorithm.

• There is no implicit assumption that a 
global clock exists.
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Pitfalls when Developing 
Distributed Systems

• The network is reliable
• The network is secure
• The network is homogeneous
• The topology does not change
• Latency is zero
• Bandwidth is infinite
• Transport cost is zero
• There is one administrator
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Types of Distributed Systems

• Distributed Computing Systems
– High Performance Computing (HPC)

• Distributed Information Systems
– Transaction Processing Systems (TPS)
– Enterprise Application Integration (EAI)

• Distributed Pervasive Systems
– Ubiquitous Systems
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• Recall OS
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Ø Asymmetric multiprocessing 
Ø Master processor controls and allocates work to the slave processors 
Ø More common in extremely large systems

Ø Symmetric multiprocessing 
Ø Each processor performs all tasks within OS
Ø No master-slave relationship exists between processors

Symmetric Multiprocessing 
Architecture

Types of Multiprocessor Systems
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Clustered Systems

} Like multiprocessor systems, but multiple systems 
working together
◦ Usually sharing storage via a storage-area network (SAN) 

& closely linked via a LAN
◦ Provides a high-availability service which survives failures

� Asymmetric clustering has one machine in hot-standby mode 
monitoring the active server while the other is running the applications

� Symmetric clustering has multiple nodes running applications, 
monitoring each other

◦ Some clusters are for high-performance computing (HPC)
� Applications must be written to use parallelization (dividing a 

program into separate components that run in parallel on individual 
PCs)
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• END Recall OS
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Clustered Systems Architecture
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Cluster Computing Systems

• Collection of similar workstations/PCs, closely 
connected by means of a high-speed LAN:
– Each node runs the same OS. 
– Homogeneous environment
– Can serve as a supercomputer
– Excellent for parallel programming

• Examples: Linux-based Beowulf clusters, 
MOSIX (from Hebrew University).
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Architecture for Cluster Computing System
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Cluster Configurations
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Grid Computing Systems

• Collection of computer resources, usually owned by multiple 
parties and in multiple locations, connected together such that 
users can share access to their combined power:
– Can easily span a wide-area network
– Heterogeneous environment
– Crosses administrative/geographic boundaries
– Supports Virtual Organizations (VOs): grouping of users 

that will allow for authorization on resource allocation.
– Examples: EGEE - Enabling Grids for E-SciencE (Europe), 

Open Science Grid (USA).
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Architecture for Grid Computing Systems 

Fabric: provide interfaces 
to local resources

Connectivity: Communication 
protocols eg: moving data, 
authentication

Resource Layer: manage 
a single resource 

Collective Layer: Handles 
access to multiple resources

Application: Contains actual grid 
application in a single organization
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• Recall OS
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Computing Environments – Cloud Computing

} Delivers computing, storage, even apps as a service across a 
network

} Logical extension of virtualization as based on virtualization
} Many types
◦ Public cloud
◦ Private cloud
◦ Hybrid cloud – includes both public and private cloud components

• Models
◦ Software as a Service (SaaS) – one or more applications available via the 

Internet (i.e. word processor)
◦ Platform as a Service (PaaS) – software stack ready for application use via 

the Internet (i.e a database server)
◦ Infrastructure as a Service (IaaS) – servers or storage available over Internet 

(i.e. storage available for backup use)
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• END Recall OS



32

Cloud Computing Systems (1)

• Collection of computer resources, usually owned by a 
single entity, connected together such that users can 
lease access to a share of their combined power:
– Location independence: the user can access the 

desired service from anywhere in the world, using 
any device with any (supported) system. 

– Cost-effectiveness: the whole infrastructure is 
owned by the provider and requires no capital 
outlay by the user. 

– Reliability: enhanced by way of multiple redundant 
sites, though outages can occur, leaving users 
unable to remedy the situation. 
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Cloud Computing Systems (2)

– Scalability: user needs can be tailored to available 
resources as demand dictates – cost benefit is 
obvious.  

– Security: low risk of data loss thanks to 
centralization, though problems with control over 
sensitive data need to be solved. 

– Readily consumable: the user usually does not 
need to do much deployment or customization, 
as the provided services are easy to adopt and 
ready-to-use. 

• Examples: Amazon EC2 (Elastic Compute Cloud), 
Google App Engine, IBM Enterprise Data Center, 
MS Windows Azure, SUN Cloud Computing. 
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Integrating Applications
• Uniting the databases and workflows associated 

with business applications to ensure the 
business uses them consistently.

• Example: data from CRM can be integrated 
with e-mail marketing platform.
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Transaction Processing Systems (TPS)

The role of a TP monitor in distributed systems
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• TP Monitor: Transaction Processing Monitor
– Allows an application to access different server
– Coordinates the commit of the transactions

à So, it provides services that are useful for many
applications avoiding that such service be
implemented by the applications themselves.
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Enterprise Application Integration
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Communication Middleware Models/Paradigm

• Distributed File Systems
• Remote Procedure Call (RPC)
• Distributed Objects (RMI)
• Distributed Documents
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Distributed Pervasive Systems

• Requirements for pervasive systems:
– Embrace contextual changes
– Encourage ad hoc composition
– Recognize sharing as the default
– Support distribution transparency
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Electronic Health Care Systems (1)

• Questions to be addressed for health care 
systems:

– Where and how should monitored data be stored?
– How can we prevent loss of crucial data?
– What infrastructure is needed to generate and 

propagate alerts?
– How can physicians provide online feedback?
– How can extreme robustness of the monitoring 

system be realized?
– What are the security issues and how can the 

proper policies be enforced?
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Electronic Health Care Systems (2)

Monitoring a person in a pervasive electronic 
health care system, using (a) a local hub
or (b) a continuous wireless connection
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Sensor Networks (1)

• The nodes to which sensors are attached are:
– Many (10s-1000s).
– Simple (i.e., hardly any memory, CPU power, 

or communication facilities).
– Often battery-powered (or even battery-less).

• Questions concerning sensor networks:
– How do we (dynamically) set up an efficient tree 

in a sensor network?
– How does aggregation of results take place? 

Can it be controlled?
– What happens when network links fail?
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Sensor Networks (2)

Organizing a sensor network database, while 
storing and processing data (a) only at the 
operator’s site or …
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Sensor Networks (3)

Organizing a sensor network database, while 
storing and processing data … or (b) only at 
the sensors


