
1

Distributed Systems

Introduction
Chapter 1

2

Course/Slides Credits

Note: all course presentations are based on those
developed by Andrew S. Tanenbaum and
Maarten van Steen. They accompany their
"Distributed Systems: Principles and
Paradigms" textbook (1st & 2nd editions).
http://www.prenhall.com/divisions/esm/app/aut
hor_tanenbaum/custom/dist_sys_1e/index.html

And additions made by Paul Barry in course
CW046-4: Distributed Systems
http://glasnost.itcarlow.ie/~barryp/net4.html

http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/dist_sys_1e/index.html
http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/dist_sys_1e/index.html
http://glasnost.itcarlow.ie/~barryp/net4.html

3

Outline
vWhat is a distributed system?
vDesign Goals
vPitfalls when Developing Distributed Systems
vTypes of Distributed Systems

4

Definition of a Distributed System (1)

A distributed system is:
A distributed system is a collection of autonomous computing

elements that appears to its users as a single coherent system.

Characteristic 1: Collection of autonomous computing elements
• Autonomuous computing nodes
• Independent behavior: No global time- Need of synchronization
• Group membership issues.

Characteristic 2: Single coherent system
• User or application perceive a single system -->Nodes need to collaborate
• The collection of nodes as a whole operates the same, no matter where, when, and
how interaction between a user and the system takes place.
• End user would not be able to tell exactly on which computer a process is
Currently executing / part of a task has been spawned off to another process /
where data is stored or replicated should be of no concern

5

Definition of a Distributed System (2)

• A distributed system organized as middleware.
• The middleware layer extends over multiple machines, and offers each application
the same interface. It hides the differences in hardware and OSs.
• Contains commonly used components or functions that need not to be implemented
by each applications.

6

Definition of a Distributed System (2)
• Middleware = OS of distributed System

– Manager of resources offering its applications to
efficiently share and deploy those resources across a
network.

– Facilities for inter-application communication.
– Security services.
– Accounting services.
– Masking of and recovery from failures.

• Difference with OS is that their services are
offered in a networked environment.

7

Goals of Distributed Systems

• Easily Connect Users/Resources and support
resource sharing.

• Exhibit Distribution Transparency
• Support Openness
• Be Scalable:

– in size
– geographically
– administratively

Looking at these goals helps use answer the question: “Is
building a distributed system worth the effort?”

8

Connect Users/Resources and
support resource sharing.

• Resources : storage, services, data…
– Example: file sharing peer-to-peer; Bittorrent

• Cheaper to have a single reliable storage facility
• Connecting makes collaboration easy.

9

Transparency in a Distributed System

Different forms of transparency in a distributed system (ISO, 1995)

Hide the fact that processes and resources are physically
distributed across different computers.

10

Openess

Able to interact with services from other open
systems, irrespective of the underlying environment:

• Well defined interface.
• Easily interoperate – coexist with others
• Support portability
• Easily extensible – Add functionality/component

11

Scalability in Distributed Systems
• Size scalability: Number of users/processes
• Geographical scalability: Maximum distance

between nodes
• Administrative scalability: Number of

administrative domains

12

Scalability Limitations

Examples of scalability limitations

Concept Example

Centralized services A single server for all users

Centralized data A single on-line telephone book

Centralized algorithms Doing routing based on complete information

13

Scaling Techniques (1)

Scaling is limited by the servers and network capacity.

Solutions:
Scaling up: Increase the capacities (CPU, memory, network

modules..)

Scaling out: expanding the DS by deploying more machines.

14

Scaling Techniques (1)

1.4

The difference between letting (a) a server
or (b) a client check forms as they are being filled

Moving computation to client.

15

Scaling Techniques (2)

1.5

An example of dividing the DNS name space into zones

Partition data and computation across multiple machine
Replication and caching (problems of inconsistency)

16

Characteristics of decentralized algorithms:

• No machine has complete information
about the system state.

• Machines make decisions based only
on local information.

• Failure of one machine does not ruin
the algorithm.

• There is no implicit assumption that a
global clock exists.

17

Pitfalls when Developing
Distributed Systems

• The network is reliable
• The network is secure
• The network is homogeneous
• The topology does not change
• Latency is zero
• Bandwidth is infinite
• Transport cost is zero
• There is one administrator

18

Types of Distributed Systems

• Distributed Computing Systems
– High Performance Computing (HPC)

• Distributed Information Systems
– Transaction Processing Systems (TPS)
– Enterprise Application Integration (EAI)

• Distributed Pervasive Systems
– Ubiquitous Systems

19

• Recall OS

20

Ø Asymmetric multiprocessing
Ø Master processor controls and allocates work to the slave processors
Ø More common in extremely large systems

Ø Symmetric multiprocessing
Ø Each processor performs all tasks within OS
Ø No master-slave relationship exists between processors

Symmetric Multiprocessing
Architecture

Types of Multiprocessor Systems

21

Clustered Systems

} Like multiprocessor systems, but multiple systems
working together
◦ Usually sharing storage via a storage-area network (SAN)

& closely linked via a LAN
◦ Provides a high-availability service which survives failures

� Asymmetric clustering has one machine in hot-standby mode
monitoring the active server while the other is running the applications

� Symmetric clustering has multiple nodes running applications,
monitoring each other

◦ Some clusters are for high-performance computing (HPC)
� Applications must be written to use parallelization (dividing a

program into separate components that run in parallel on individual
PCs)

22

• END Recall OS

23 A. Frank - P. Weisberg

Clustered Systems Architecture

24

Cluster Computing Systems

• Collection of similar workstations/PCs, closely
connected by means of a high-speed LAN:
– Each node runs the same OS.
– Homogeneous environment
– Can serve as a supercomputer
– Excellent for parallel programming

• Examples: Linux-based Beowulf clusters,
MOSIX (from Hebrew University).

25

Architecture for Cluster Computing System

26

Cluster Configurations

27

Grid Computing Systems

• Collection of computer resources, usually owned by multiple
parties and in multiple locations, connected together such that
users can share access to their combined power:
– Can easily span a wide-area network
– Heterogeneous environment
– Crosses administrative/geographic boundaries
– Supports Virtual Organizations (VOs): grouping of users

that will allow for authorization on resource allocation.
– Examples: EGEE - Enabling Grids for E-SciencE (Europe),

Open Science Grid (USA).

28

Architecture for Grid Computing Systems

Fabric: provide interfaces
to local resources

Connectivity: Communication
protocols eg: moving data,
authentication

Resource Layer: manage
a single resource

Collective Layer: Handles
access to multiple resources

Application: Contains actual grid
application in a single organization

29

• Recall OS

30

Computing Environments – Cloud Computing

} Delivers computing, storage, even apps as a service across a
network

} Logical extension of virtualization as based on virtualization
} Many types
◦ Public cloud
◦ Private cloud
◦ Hybrid cloud – includes both public and private cloud components

• Models
◦ Software as a Service (SaaS) – one or more applications available via the

Internet (i.e. word processor)
◦ Platform as a Service (PaaS) – software stack ready for application use via

the Internet (i.e a database server)
◦ Infrastructure as a Service (IaaS) – servers or storage available over Internet

(i.e. storage available for backup use)

31

• END Recall OS

32

Cloud Computing Systems (1)

• Collection of computer resources, usually owned by a
single entity, connected together such that users can
lease access to a share of their combined power:
– Location independence: the user can access the

desired service from anywhere in the world, using
any device with any (supported) system.

– Cost-effectiveness: the whole infrastructure is
owned by the provider and requires no capital
outlay by the user.

– Reliability: enhanced by way of multiple redundant
sites, though outages can occur, leaving users
unable to remedy the situation.

33

Cloud Computing Systems (2)

– Scalability: user needs can be tailored to available
resources as demand dictates – cost benefit is
obvious.

– Security: low risk of data loss thanks to
centralization, though problems with control over
sensitive data need to be solved.

– Readily consumable: the user usually does not
need to do much deployment or customization,
as the provided services are easy to adopt and
ready-to-use.

• Examples: Amazon EC2 (Elastic Compute Cloud),
Google App Engine, IBM Enterprise Data Center,
MS Windows Azure, SUN Cloud Computing.

34

Integrating Applications
• Uniting the databases and workflows associated

with business applications to ensure the
business uses them consistently.

• Example: data from CRM can be integrated
with e-mail marketing platform.

35

Transaction Processing Systems (TPS)

The role of a TP monitor in distributed systems

36

• TP Monitor: Transaction Processing Monitor
– Allows an application to access different server
– Coordinates the commit of the transactions

à So, it provides services that are useful for many
applications avoiding that such service be
implemented by the applications themselves.

37

Enterprise Application Integration

38

Communication Middleware Models/Paradigm

• Distributed File Systems
• Remote Procedure Call (RPC)
• Distributed Objects (RMI)
• Distributed Documents

39

Distributed Pervasive Systems

• Requirements for pervasive systems:
– Embrace contextual changes
– Encourage ad hoc composition
– Recognize sharing as the default
– Support distribution transparency

40

Electronic Health Care Systems (1)

• Questions to be addressed for health care
systems:

– Where and how should monitored data be stored?
– How can we prevent loss of crucial data?
– What infrastructure is needed to generate and

propagate alerts?
– How can physicians provide online feedback?
– How can extreme robustness of the monitoring

system be realized?
– What are the security issues and how can the

proper policies be enforced?

41

Electronic Health Care Systems (2)

Monitoring a person in a pervasive electronic
health care system, using (a) a local hub
or (b) a continuous wireless connection

42

Sensor Networks (1)

• The nodes to which sensors are attached are:
– Many (10s-1000s).
– Simple (i.e., hardly any memory, CPU power,

or communication facilities).
– Often battery-powered (or even battery-less).

• Questions concerning sensor networks:
– How do we (dynamically) set up an efficient tree

in a sensor network?
– How does aggregation of results take place?

Can it be controlled?
– What happens when network links fail?

43

Sensor Networks (2)

Organizing a sensor network database, while
storing and processing data (a) only at the
operator’s site or …

44

Sensor Networks (3)

Organizing a sensor network database, while
storing and processing data … or (b) only at
the sensors

